Part 3 Forces in Motion

Part 3 Lesson 1 Centripetal Force

Name: Due:

I am aware that I need to show all mathematical work in an organized manner to receive any credit for a question that involves calculations of any kind. Omitting / leaving out the units in the problem or at the end will also result in zero credit _ 0 _____

Centripetal Force: Force that acts on a body moving in a circular path and is directed ______ around which the body is moving.

Centrifugal Force: (Does not exist) The Force that makes you _____ that a force is acting outward on a body moving around a center, arising from the body's inertia.

Which is centrifugal force (fictitious), and which is a centripetal force?

Response=

Which is a Scalar, and which is a vector as described in the slideshow. What are differences between the two and name some scalar and vector quantities.

Speed: A measure of motion, = distance d_____ by time. D/T

-Speed is the rate of motion, or the rate of change of position.

-Can only be zero or positive.

Distance = Spee	d * time ()
Speed = Distanc	e	by time
Time = Distance		by Speed

How far did Joe walk if he walked a steady 4 km/h for three straight hours?	What is Joes speed if he walked a steady 5 km in one hour?
Show your work and cross off your units	Show your work and cross off your units
Juan traveled 300km in 6hrs. Find his average speed in km/h.	Marlene drove 500 km at an average speed of 50 km/h? How long did she drive?
Show your work and cross off units Sofia can run a distance of 100 meters in 20 seconds. Find the speed of Sofia in m/s	Show your work and cross off units An elderly woman goes on a trip and drives
	Pace and drives the next 180 km in 4 hrs. -What is her average speed for the entire trip in km per hour?
Show your work and cross off units	

Part 3 Lesson 2 Displacement/Velocity

Catching the Violators

Name:_____

Distance Feet	Divided By	Time (Sec)	Multiplied by	Feet to sec. to mph conv.	Equals	Mph Miles per Hour
300	1		Х	.681	=	
300	1		Х	.681	=	
300	1		Х	.681	=	
300	1		Х	.681	=	
300	/		Х	.681	=	
300	/		Х	.681	=	
300	/		Х	.681	=	
300	1		Х	.681	=	
300	/		Х	.681	=	
300	1		Х	.681	=	
300	/		Х	.681	=	
300	/		Х	.681	=	
300	/		Х	.681	=	
300	/		Х	.681	=	

Total Average =_____

Add all of the miles per hour gathered and divide it by the number of cars to get an average mph. Was it over the speed limit? Do we have a speeding problem near the school?

Please create your own story and then graph it demonstrating how a person or objects distance changes over time below.

_	
_	

Use the chart on the right to answer the questions.

How far did the car travel in the first 15	posit 80	tion (m) 		1	1	
A what time did the car come to a stop and begin backing up?	60						
When did the car accelerate the second time?	40		\mathbf{I}				
Did the car end up where it started. Use the space beneath the chart to explain with a drawing.	20	Ζ					
Shade the positive acceleration a color and negative acceleration / deceleration a color and label with a	- 20 40						
key?	- 40		1	0	2	20	3
	Acc	eler	atior	חו	De	cele	ratio

Part 3 Lesson 3 Velocity

Please use the chart below to answer the questions

Classwork! The following problems can be completed together when covered in class. Please show your work.

Time: A measuring system used to sequence events, to compare the durations of events and the intervals between them, and to quantify the motions of objects? Velocity: The rate at which an object changes its position. (m/s/Direction)

Speed: A measure of motion, = distance divided by time. D/T (m/s)

It took Lightning McGreen 2.5 hours to travel	It took Ms. Rally 4 hours to travel 165
600 Kilometers.	Kilometers due North. What was the velocity of her car in
	Kilometers an hour?
What is the speed if distance is 310 km and	How far did Doc Budson travel if he was
the time was 3 hours? Was later speeding?	aoing 60 kilometers an hour for 4 straight
(80)	
km/h	
What is the speed if a runner runs a distance	Make a word problem here and have a peer
of 400 meters 43 seconds?	solve it
Show your work and Units!	

Types of Velocities

-Constant Velocity: Object ______change direction or speed. An object moving at constant velocity would moving in a straight line at a ______ speed.

-An example would be an asteroid or a comet.

-Instantaneous Velocity: Object ______in direction and speed at a particular point in time.

-Changing Velocity: Object changes in _____ or _____

-This type of velocity is also considered to be acceleration

Terminal Velocity: Objects that fall through the _____. This is caused by changes due to _____ resistance.

-Gravity causes the object to accelerate towards the ground. The resistance of the medium through which it is falling prevents further acceleration.

Find the Velocity of the ball over 2 meters. What is its velocity when it lands in the bucket .25 meters, .5 meters, and .75m from the edge of the table.

$v = \Delta s / \Delta t$. $v = \Delta 1 m / \Delta$ (time in seconds)

.25m	Velocity	=	Δ2m	Divided	Δ(time in	V=	Direction N, E,
Target				by	seconds)	m/s	S, W
.50m	Velocity	Ш	Δ2m	Divided	Δ (time in	V=	Direction N, E,
Target				by	seconds)	m/s	S, W
.75m	Velocity	Ш	Δ2m	Divided	Δ (time in	V=	Direction N, E,
Target				by	seconds)	m/s	S, W

How did the ramp height have to change? Why?

Part 3 Lesson 4 Acceleration

Acceleration = The rate of in velocity The final velocity – the starting velocity also $a = (v_2 - v_1)/(t_2 - t_1)$	bcity. (m/s ²) $\Delta =$ locity, divided by t
Deceleration – To s velocity. The same formula but value will b	e n
Ratman's rat mobile is traveling at 80m/s North when it turns on its rocket boosters accelerating the bat mobile to 200 m/s in 4 seconds. What's the rat mobiles acceleration? Remember, the SI Unit is m/s ²	A unicyclist was traveling at 2 m/s South and speed up to 6 m/s in 3 seconds. What was the acceleration? Remember, the SI Unit is m/s ²

A flaming bagpiping unicyclist was trying to take down an Imperial AT-AT.

- He was traveling at 1.5 m/s in a counterclockwise direction when he sped up to 3 m/s in 6 seconds. He then launched his harpoon gun and tow cable.
- What was his acceleration?

Part 3 Lesson 5 Momentum

Momentum: A measure of the motion of a body equal to the product of its mass and v_____.

What is the momentum of Fred if he weighs 3000 kg and is traveling with a velocity of 20 m/s / West? Show your work and Units for all questions!

Vector dropped from a plane with his wingsuit. He has a mass of 50 kg and a momentum of 10.41 kg/m/s downward? What was his velocity through the air?

Momentum kg/m/s	
Mass = kg Welocity m/s	

Law Conservation of Momentum: The momentum of an object is the product of its

m_____ and its _____. Angular momentum: _____ objects tend to remain rotating at the same speed / direction unless acted upon.

When you draw the weights inward, your moment of inertia _____, and your velocity _____ (spin faster).

oulldozer exerts 50,000 newtons over	a 10,00	0 Joules of	work we	ere acco	omplished
tance of 6 meters.	a gro	oup of sled a	dogs exe	erting 40	00 newtons
w much work was bulldozer doing? S	how How	far did the	dogs tra	avel in m	neters?
ur work and Units!	W = F	times D			
	┼──┤ │ ┣ ╋──				
It took Speedy Pete 5 hours to tro 1,000 kilometers. How fast was h	e going				
It took Speedy Pete 5 hours to tro 1,000 kilometers. How fast was h in Kilometers an hour?	gvel e going				
It took Speedy Pete 5 hours to tro 1,000 kilometers. How fast was h in Kilometers an hour?	gvel e going Lisa's Lim	0's is traveli			
It took Speedy Pete 5 hours to tro 1,000 kilometers. How fast was h in Kilometers an hour?	gvel e going Lisa's Lim she hits th	o's is traveli	ng at 1(Om/s We	est when
It took Speedy Pete 5 hours to tro 1,000 kilometers. How fast was h in Kilometers an hour?	Lisa's Lim she hits th 20 m/s in	o's is traveli le gas and 5 seconds	ng at 1(acceler	Om/s We ates the	est when
It took Speedy Pete 5 hours to tro 1,000 kilometers. How fast was h in Kilometers an hour?	E going Lisa's Lim she hits th 20 m/s in What's Lis	o's is traveli ne gas and 5 seconds. a's acceler	ng at 1(acceler	<mark>0m/s We</mark> ates the	est when limo to
It took Speedy Pete 5 hours to tro 1,000 kilometers. How fast was h in Kilometers an hour?	Lisa's Lim she hits th 20 m/s in What's Lis	o's is traveli ne gas and 5 seconds. a's acceler	ng at 1(acceler ation?	<mark>Om/s We</mark> ates the	est when limo to
It took Speedy Pete 5 hours to tro 1,000 kilometers. How fast was h in Kilometers an hour? in a second s	tisa's Lim she hits th 20 m/s in What's Lis	o's is traveli ne gas and 5 seconds. a's acceler	ing at 1(acceler ation?	<mark>0m/s We</mark> ates the	est when limo to
It took Speedy Pete 5 hours to tro 1,000 kilometers. How fast was h in Kilometers an hour? 	Lisa's Lim she hits th 20 m/s in What's Lis	o's is traveli ne gas and 5 seconds. a's acceler	ng at 1(acceler ation?	<mark>Dm/s We</mark> ates the	est when limo to
It took Speedy Pete 5 hours to tro 1,000 kilometers. How fast was h in Kilometers an hour? 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Lisa's Lim she hits th 20 m/s in What's Lis	o's is traveli ne gas and 5 seconds. a's acceler	ng at 1(acceler ation?	Om/s We ates the	est when limo to
A Four-Wheeler uses 10 000 newton	Lisa's Lim she hits th 20 m/s in What's Lis	o's is traveli ne gas and 5 seconds. a's acceler	ing at 1(acceler ation?	<mark>Om/s We</mark> ates the	est when limo to
A Four-Wheeler uses 10,000 newton	Lisa's Lim she hits th 20 m/s in What's Lis	o's is traveli ne gas and 5 seconds. a's acceler	ng at 1(acceler ation?	Om/s We ates the	est when limo to
A Four-Wheeler uses 10,000 newton distance of 10 meters. Work was the force	Lisa's Lim she hits th 20 m/s in What's Lis s over a times	o's is traveli ne gas and 5 seconds. a's acceleri	ing at 1(acceler ation?	Om/s We ates the	est when limo to
A Four-Wheeler uses 10,000 newton distance of 10 meters. Work = Force Distance. How much work was the f	s over a times our-	o's is traveli ne gas and 5 seconds. a's acceler	ing at 1(acceler ation?	Om/s We ates the	est when limo to
A Four-Wheeler uses 10,000 newton distance of 10 meters. Work = Force Distance. How much work was the f wheeler doing?	s over a times our-	o's is traveli ne gas and 5 seconds. a's acceler	ng at 1(acceler ation?	Om/s We ates the	est when limo to
A Four-Wheeler uses 10,000 newton distance of 10 meters. Work = Force Distance. How much work was the f wheeler doing?	Lisa's Lim she hits th 20 m/s in What's Lis s over a times our-	o's is traveli le gas and 5 seconds. a's acceler	ation?	Om/s We ates the	est when limo to
A Four-Wheeler uses 10,000 newton distance of 10 meters. Work = Force Distance. How much work was the f wheeler doing?	Lisa's Lim she hits th 20 m/s in What's Lis s over a times our-	o's is traveli le gas and 5 seconds. a's acceler	ing at 1(acceler ation?	Om/s We ates the	est when limo to
A Four-Wheeler uses 10,000 newton distance of 10 meters. Work = Force Distance. How much work was the f wheeler doing?	s over a times our-	o's is traveline gas and 5 seconds. a's acceler	ng at 10 acceler ation?	Om/s We ates the	est when limo to
A Four-Wheeler uses 10,000 newton distance of 10 meters. Work = Force Distance. How much work was the f wheeler doing?	s over a times our-	o's is traveli le gas and 5 seconds. a's acceler	ng at 1(acceler ation?	Om/s We ates the	est when limo to
A Four-Wheeler uses 10,000 newton distance of 10 meters. Work = Force Distance. How much work was the f wheeler doing?	s over a times our-	o's is traveli le gas and 5 seconds. a's acceler	ing at 1(acceler ation?	Om/s We ates the	est when limo to
A Four-Wheeler uses 10,000 newton distance of 10 meters. Work = Force Distance. How much work was the f wheeler doing?	s over a times our-	o's is traveline gas and 5 seconds. a's acceler	ing at 10 acceler ation?	Om/s We ates the	est when limo to

A soap box car that weighed 85 kilograms traveled 1500 meters South in 295 seconds. (1500 m = 1.5 km, 295 s = .081hr) - What was the velocity of the car in km/hr? - What was the momentum of the car?	A soap box car traveled at a speed of 18.51 m/s for .081 hours (18.51 m/s = .01851 km) - How long was the track?
While traveling down the course, the soap box car going 5 m/s skidded out of control around a turn to a speed of 2.3 m/s for a period of 3 seconds. The driver almost fell out on the turn. – What was the deceleration of the car? – What's the name for the fictious force that the driver experienced?	The soap box car exerted 8,500 Newtons along the 1500 meter track What was the work accomplished?

Notes from the Unit

Across

4. Angular momentum: ______ objects tend to remain rotating at the same speed / direction unless acted upon.

5. _____ Velocity: Object changes in speed or direction. This type of velocity is also considered to be acceleration

7. Momentum = Mass times _____

8. Acceleration = The final velocity – the starting velocity, divided by _____

13. Velocity = Speed (distance / time) and d_____.

15. _____ Velocity: Object changes in direction and speed at a particular point in time.

17. Distance = _____ * time (Multiply)

18. Time = Distance _____ by Speed

19. Speed = _____ divided by time

21. A measure of the motion of a body equal to the product of its mass and velocity.

23. _____ = The rate of change in velocity. (m/s²) Thefinal velocity – the starting velocity, divided by time. also... a = (v2 - v1)/(t2 - t1)

Down

1. _____ = To slow velocity.

2. Acceleration = The final velocity - the _____ velocity, divided by time

3. _____ Velocity: Object does not change direction or speed. An object moving at constant velocity would moving in a straight line at a steady speed. An example would be an asteroid or a comet.

6. _____ Force: (Does not exist) The Force that makes you feel that a force is acting outward on a body moving around a center, arising from the body's inertia. Not a real force!

9. Amount of Work (w) done depends on two things: F_____ times Distance

10. _____ Force: Force that acts on a body moving in a circular path and is directed toward the center and around which the body is moving.

11. ______ theorem, the well-known geometric theorem that the sum of the squares on the legs of a right triangle is equal to the square on the hypotenuse (the side opposite the right angle)—or, in familiar algebraic notation, a2 + b2 = c2.

12. Acceleration = The _____ velocity – the starting velocity, divided by time

14. Law C_____ of Momentum: The momentum of an object is the product of its mass and its velocity.

16. _____ Velocity: Objects that fall through the atmosphere. This is caused by changes due to air resistance.

20. A unit of energy, work, or amount of heat. Equal to the energy expended in applying a force of one newton through a distance of one meter.

22. For a collision occurring between two objects (cars) the total momentum of the two objects before the collision is _____

to the total momentum of the two objects after the collision.

------Teacher can remove this word bank to make puzzle more challenging------

Possible Answers

ACCELERATION, CENTRIFUGAL , CENTRIPETAL, CHANGING , CONSERVATION, CONSTANT, DECELERATION, DIRECTION, DISTANCE, DIVIDED, EQUAL, FINAL, FORCE, INSTANTANEOUS , JOULE, MOMENTUM, PYTHAGOREAN, ROTATING, SPEED, STARTING, TERMINAL, TIME, VELOCITY

Forces in Motion Lesson 6

Name:

1-20 = 5 pts Show your work and Units!

*20-*25 * = Bonus + 1 pt, (Secretly write owl in correct space +1 pt) Final Question = 5 pt waaer

Score ____ / 100

Final Question = 5 pt v	vager			1		
CENTIPEDE	SPEEDY PETE	HERE WE GO	MOVIN AND GROOVIN	RACE FLIX Bonus round 1 pt each		
1)	6)	11)	16)	*21)		
2)	7)	12)	17)	*22)		
3)	8)	13)	18)	*23)		
4)	9)	14)	19)	*24)		
5)	10)	15)	20)	*25)		
Final Question: 5 Point Wager=WAGER						

Part 3 Forces in Motion

Name:

Due:

I am aware that I need to show all mathematical work in an organized manner to receive any credit for a question that involves calculations of any kind. Omitting / leaving out the units in the problem or at the end will also result in zero credit \diamond _____

- Centrifugal Force: (Does not exist) The Force that makes you feel that a force is acting outward on a body moving around a center, arising from the body's inertia. Not a real force!
- Centripetal Force: Force that acts on a body moving in a circular path and is directed toward the center and around which the body is moving.

Which is centrifugal force (fictitious), and which is a centripetal force?

Speed: A measure of motion, = distance distance by time. D/T

Speed = Distance divided by time Time = Distance divided by Speed

What is the speed of a car that takes two hours to drive 80 miles?

2hr/80m = 40 mph

How far did I drive if I traveled 82 km/hr for 4 hours?

82km times 4 hours = 328km/h

PLEASE SHOW YOUR WORK!

Please create your own story and then graph it demonstrating how a person or objects distance changes over time.

Cool Story: Answers will vary but the story and graph should make sense for how an object changes over time.

Use the chart on the right to answer the questions.

											23
How far did the car travel in the first 15 seconds? <mark>60 m</mark>	posit 80	ion (r	n)							_	+-+
A what time did the car come to a stop and begin backing up? <mark>At</mark> <mark>15 seconds</mark>	60 40		7								
When did the car accelerate the second time? After <mark>40 seconds</mark>	20	/	/							_	
Did the car end up where it started. Use the space beneath the chart to explain with a drawing. Y <mark>es, the car</mark> accelerated, and then backed	- 20										
up and then accelerated to where it started			1	0	2	20	3	0	40	tim	50 1e (sec)
Shade the positive acceleration a color and negative acceleration / deceleration a color and label with a key? If going in a positive	Aco	cele	əra [.]	tior	ר ר		D	ece	elera	tion	
direction it is acceleration, if going negative is negative acceleration or deceleration											

Please use the chart below to answer the questions

- Velocity = Speed (distance / time) and direction.
 - velocity = Distance Divided by Time
- Acceleration = The rate of change in velocity. (m/s²) The final velocity – the starting velocity, divided by time.

also... $a = (v_2 - v_1)/(t_2 - t_1)$

Deceleration – To slow velocity. The same formula but value will be negative.

Classwork! The following problems can be completed together when covered in class. Please show your work.

Time: A measuring system used to sequence events, to compare the durations of events and the intervals between them, and to quantify the motions of objects?

Velocity: The rate at which an object changes its position. (m/s/Direction) Speed: A measure of motion, = distance divided by time. D/T (m/s)

It took Lightning McGreen 2.5 hours to travel	It took Ms. Rally 4 hours to travel 165
600 kilometers.	kilometers due North.
How fast was he going in Kilometers an hour?	What was the velocity of her car in Kilometers
	an hour?
Speed = Distance / Time	Velocity = Distance / Time
<mark>Speed = 600 km / 2.5 h</mark>	Velocity = 165 km / 4 h
<mark>Speed = 240 km/h</mark>	Velocity = 41.25 km/h/North

	25
What is the speed if distance is 340 km and the time was 3 hours? Was Jater speeding? SPEED LIMIT 80 km/h Speed = Distance / Time Speed = 340km / 3 h Speed = 113km/h Yes, Jater was speeding	How far did Doc Budson travel if he was going 60 kilometers an hour for 4 straight hours? Distance = Speed • Time Distance = 60km/h • 4 h • 60 km times 4 hours = 240 km Check your work, 240/4 should be 60.
What is the speed if a runner runs a distance of 400 meters 43 seconds? Speed = Distance / Time Speed = 400m / 43s Speed = 9.30 m/s • 400m / 43s = 9.30 m/s	Make a word problem here and have a peer solve it. <u>Answers will vary</u>
Ratman's rat mobile is traveling at 80m/s North when it turns on its rocket boosters accelerating the bat mobile to 200 m/s in 4 seconds. What's the rat mobiles acceleration? Remember, the SI Unit is m/s ² • a = (Final velocity – starting velocity) / time. • a = 200m/s -80m/s / 4 s = • a = 120 m/s / 4 s = 30 m/s ² North	A unicyclist was traveling at 2 m/s South and speed up to 6 m/s in 3 seconds. What was the acceleration? Remember, the SI Unit is m/s ² $a = \frac{\Delta v}{\Delta d} = \frac{\frac{4 \text{ m/s}}{Vf - Vi}}{\frac{1.333 \text{ m/s}^2 \text{ South}}{1.333 \text{ m/s}^2 \text{ South}}$
Lightning McGreen was traveling 200 m/s West when he slowed to 50 m/s in 10 seconds. What was his deceleration? Remember, the SI Unit is m/s ² Deceleration = -15 m/s ² West $a = \frac{\Delta v}{\Delta d} = \frac{\frac{-150 \text{ m/s}}{\text{Vf} - \text{Vi}}}{\frac{\text{tf} - \text{ti}}{10\text{s}}}$	What is the momentum of Fred if he weighs 3000 kg and is traveling with a velocity of 20 m / s / West? $p = m \cdot V$ Momentum = 3000 kg \cdot 20/m/s/ West Momentum = 60,000 kg/m/s West Momentum = 6 x 10 ⁴ kg/m/s West

	26
Chick Licks weighs 1000 kg and had a velocity of 20 m/s North. What was his momentum? $p = m \cdot v$ Momentum = 1000 kg \cdot 20/m/s/ North Momentum = 20,000 kg/m/s North Momentum = 2 x 10 ⁴ kg/m/s North	A model airplane exerts 0.25 newtons over a distance of 10 meters. Work = Force times Distance. How much work was the plane doing? • The plane will expend 2.5 Joules.
A bulldozer exerts 50,000 newtons over a distance of 6 meters. Work = Force times Distance. How much work was bulldozer doing? W = F * D W = 50,000 newtons * 6 meters W = 300,000 Joules	10,000 Joules of work were accomplished by a group of sled dogs exerting 400 newtons. How far did the dogs travel in meters? W = F times D - Work / Force = Distance - 10,000 J / 400 N = D D = 25 meters

If a car traveling at a velocity of 80 m/s/South accelerated to a velocity of 100 m/s/South in 5 seconds, what is the cars acceleration?	The same car traveling 100 m/s/ South decelerates to a velocity of 40 m/s/South in three seconds. What is the cars deceleration?
Acceleration = The final velocity – the starting velocity, divided by time. 100 m/s/South – 80 m/s/South / 5	the value will be a negative. -Deceleration (final velocity – starting velocity) divided by time.
seconds Answer = 4 m/s²/South	40 m/s/south – 100 m/s/south / 3 seconds Answer= -20 m/s²/ South

- Momentum: A measure of the motion of a body equal to the product of its mass and velocity.
 - Momentum = Mass times velocity
 - Law Conservation of Momentum: The momentum of an object is the product of its mass and its velocity.
 - Angular momentum: Rotating objects tend to remain rotating at the same speed / direction unless acted upon.
 - When you draw the weights inward, your moment of inertia decreases, and your velocity increases (spin faster).

Across

4. Angular momentum: ______ objects tend to remain rotating at the same speed / direction unless acted upon.

5. _____ Velocity: Object changes in speed or direction. This type of velocity is also considered to be acceleration

7. Momentum = Mass times ____

8. Acceleration = The final velocity – the starting velocity, divided by _____

13. Velocity = Speed (distance / time) and d_____.

15. _____ Velocity: Object changes in direction and speed at a particular point in time.

17. Distance = _____ * time (Multiply)

18. Time = Distance _____ by Speed

19. Speed = _____ divided by time

21. A measure of the motion of a body equal to the product of its mass and velocity.

23. _____ = The rate of change in velocity. (m/s²) Thefinal velocity – the starting velocity, divided by time. also... a = (v2 - v1)/(t2 - t1)

Down

1. _____ = To slow velocity.

2. Acceleration = The final velocity - the _____ velocity, divided by time

3. _____ Velocity: Object does not change direction or speed. An object moving at constant velocity would moving in a straight line at a steady speed. An example would be an asteroid or a comet.

6. _____ Force: (Does not exist) The Force that makes you feel that a force is acting outward on a body moving around a center, arising from the body's inertia. Not a real force!

9. Amount of Work (w) done depends on two things: F_____ times Distance

10. _____ Force: Force that acts on a body moving in a circular path and is directed toward the center and around which the body is moving.

11. ______ theorem, the well-known geometric theorem that the sum of the squares on the legs of a right triangle is equal to the square on the hypotenuse (the side opposite the right angle)—or, in familiar algebraic notation, a2 + b2 = c2.

12. Acceleration = The _____ velocity – the starting velocity, divided by time

14. Law C_____ of Momentum: The momentum of an object is the product of its mass and its velocity.

16. _____ Velocity: Objects that fall through the atmosphere. This is caused by changes due to air resistance.

20. A unit of energy, work, or amount of heat. Equal to the energy expended in applying a force of one newton through a distance of one meter.

22. For a collision occurring between two objects (cars) the total momentum of the two objects before the collision is _____

to the total momentum of the two objects after the collision.

------Teacher can remove this word bank to make puzzle more challenging------

Possible Answers

ACCELERATION, CENTRIFUGAL , CENTRIPETAL, CHANGING , CONSERVATION, CONSTANT, DECELERATION, DIRECTION, DISTANCE, DIVIDED, EQUAL, FINAL, FORCE, INSTANTANEOUS , JOULE, MOMENTUM, PYTHAGOREAN, ROTATING, SPEED, STARTING, TERMINAL, TIME, VELOCITY

Forces in Motion Lesson 6

Name:

1-20 = 5 pts **Show your work and Units!** *20-*25 * = Bonus + 1 pt, (Secretly write owl in correct space +1 pt)

Final Question = 5 pt wager

Score ____ / 100

CENTIPEDE	SPEEDY PETE	HERE WE GO	MOVIN AND GROOVIN	RACE FLIX Bonus round 1 pt each
1) Centrifugal Force "A fictious Force"	6) <mark>1.66 h</mark>	11) <mark>Velocity</mark> "Owl"	16) <mark>Acceleration</mark> "Vector"	*21) <mark>Talladega</mark> Nights
2) <mark>Centripetal</mark> Force	7) <mark>5 m/s</mark>	12) <mark>Constant</mark> Velocity	17) <mark>a = 30 m/s</mark> / 10 s = 3 m/s² N	*22) <mark>Herbie Fully</mark> Loaded
3) <mark>A is a Scalar</mark> B is a Vector	8) <mark>400km/5hr =</mark> <mark>80km/hr.</mark>	13) Changing Velocity Acceleration	18) <mark>Deceleration =</mark> 6 m/s² West	*23) <mark>Fast and Furious</mark>
4) <mark>Distance = 6 km</mark>	9) <mark>Sprint / Jog</mark> Purple Line	14) <mark>Terminal Velocity</mark>	19) <mark>Momentum =</mark> 105 kg/m/s North	*24) <mark>Days of Thunder</mark>
5) <mark>8.33 km/h</mark>	10) Pink Line	15) Instantaneous Velocity	20) 5 N * 10 m = 50 Joules	*25) <mark>Speed Racer</mark>

Final Question: 5 Point Wager ____=WAGER Equal Energy In = Energy Out

Copyright © 2024 SlideSpark .LLC All Rights Reserved