
Part 2 Natural Selection

Part 2 Lesson 1 The Galapagos

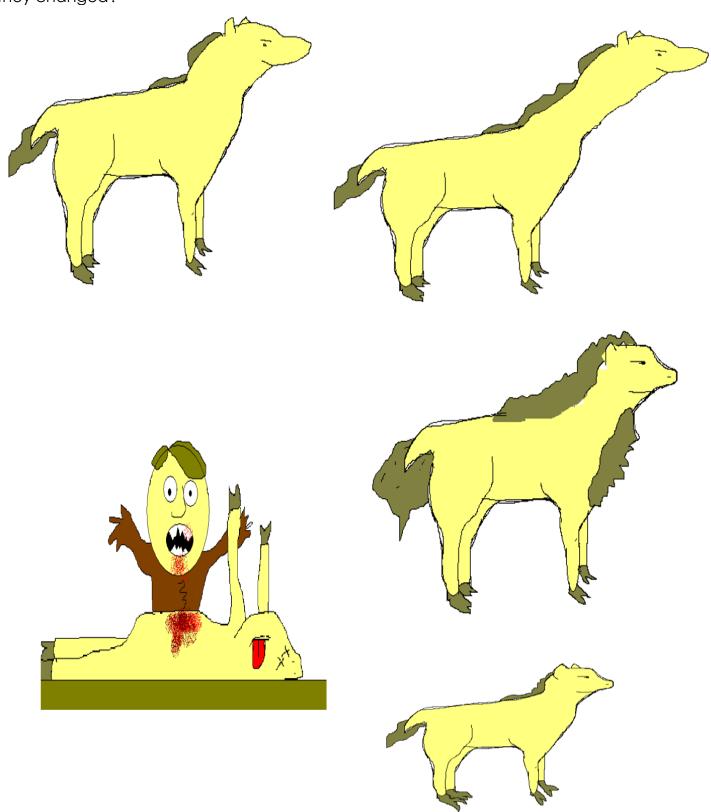
Name:	•
Due:	

Adaptive radiation: A process in wh	nich organisms	rapidly from an ancestral
species into a multitude of	, particularly when c	ı in the
environment makes new resources environmental niches.	available, alters biotic intera	ctions or opens new
Describe some of the finches that Describe some of the finches of the finches some of the finches of the finches some of the finches		and collect on his journey to

Ancestral Finch from S. America

Teacher will break your class into six groups. Research the Galapagos Islands for 15 minutes.

- Be prepared to present to the class in any means you want.
- https://www.livescience.com/62902-galapagos-islands.html


Research for your chosen topics 1-6

8 8	
S N S N S N S N S N	
K-N	
S-N	
X N	
X N	
X X X	
x = n	
X THE	
X N	
:=:	
x = 3	

#1) Geography and History	#2) Geology
3) Climate	#4) Plants
#5) Animals	#6) Environmental Threats and Conservation Efforts

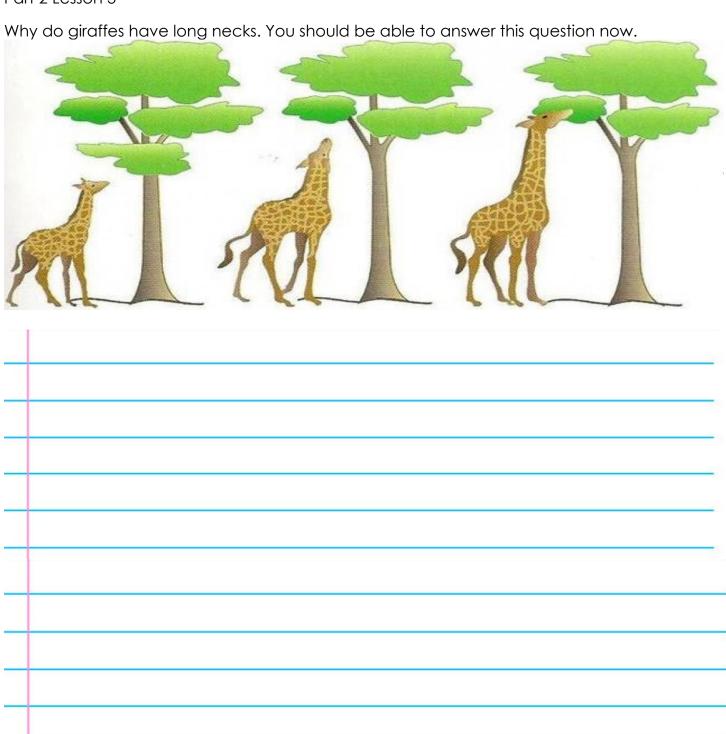
Part 2 Lesson 2

Describe some of the Hypotheticus beasts below as described in the slideshow. How have they changed?

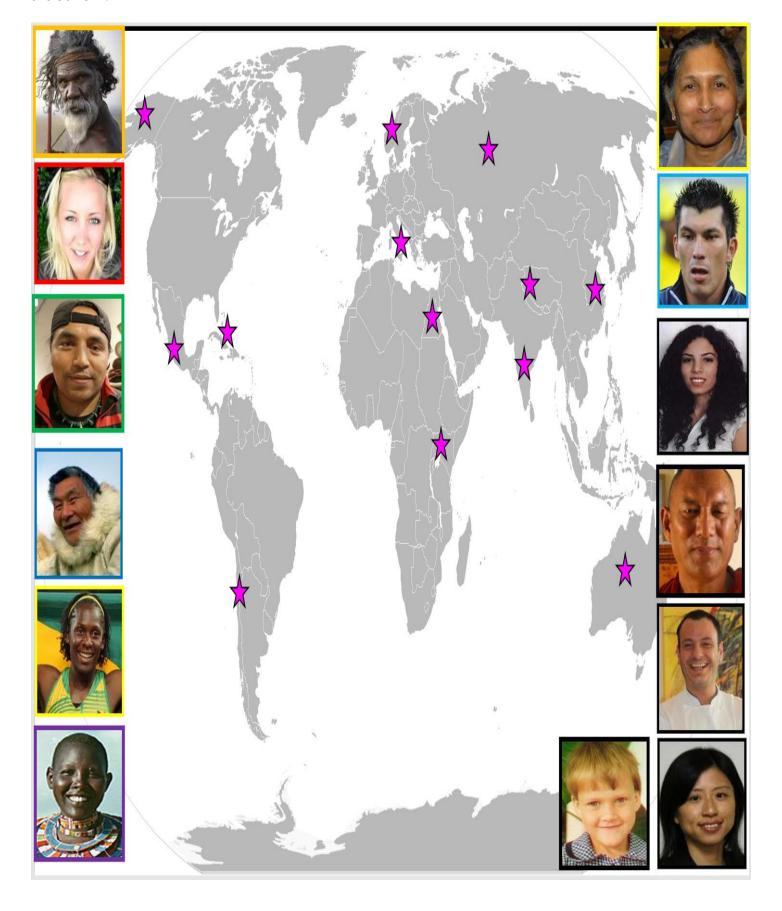

+	+	= Natural Selection.
	· · · · · · · · · · · · · · · · · · ·	- Naidiai selection.

What animal adaptation are you choosing for your real story of evolution / How did that animal end up with that adaptation? Animal and Adaptation=_____

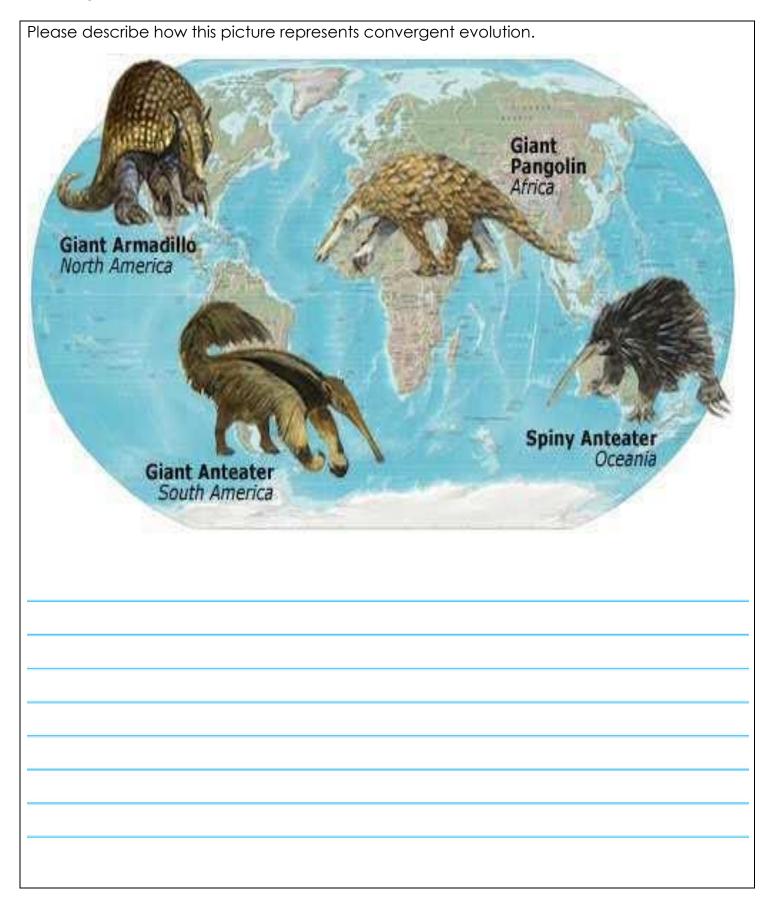
Brief Description of your story

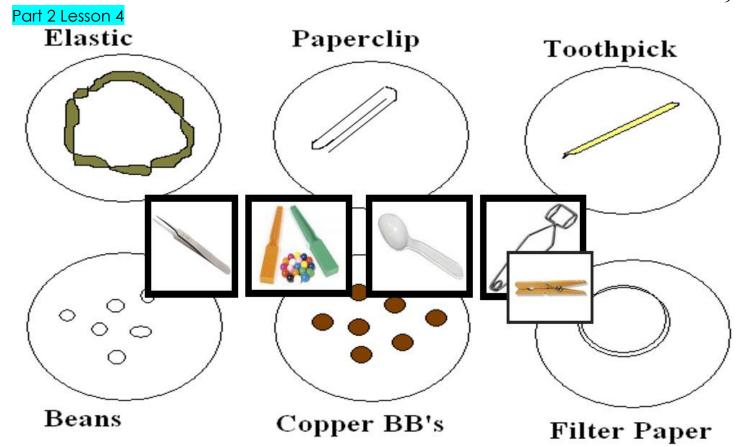


Visual of main characters

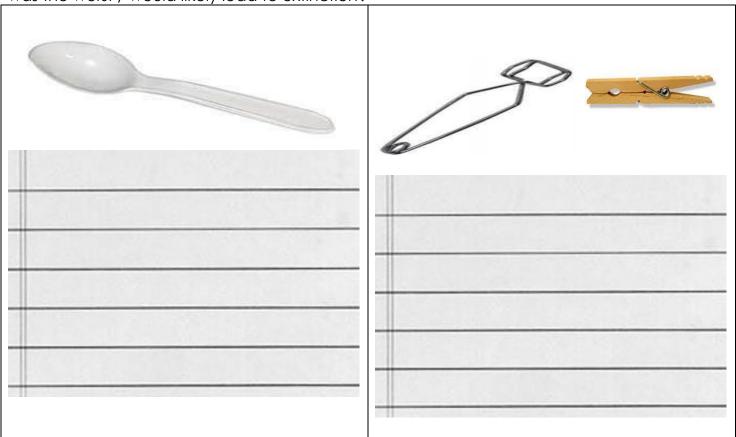

Title of the story:	Authors
How did the animal change?	
Did you like the story (1- 10 scale)?	NO 1 2 3 4 5 6 7 8 9 10 Yes
Why did you give it that rating?	
Title of the story:	Authors
How did the animal change?	
Did you like the story (1- 10 scale)?	NO 1 2 3 4 5 6 7 8 9 10 Yes
	NO 1 2 3 4 5 6 7 8 9 10 Yes
Did you like the story (1- 10 scale)?	NO 1 2 3 4 5 6 7 8 9 10 Yes
Did you like the story (1- 10 scale)?	NO 1 2 3 4 5 6 7 8 9 10 Yes

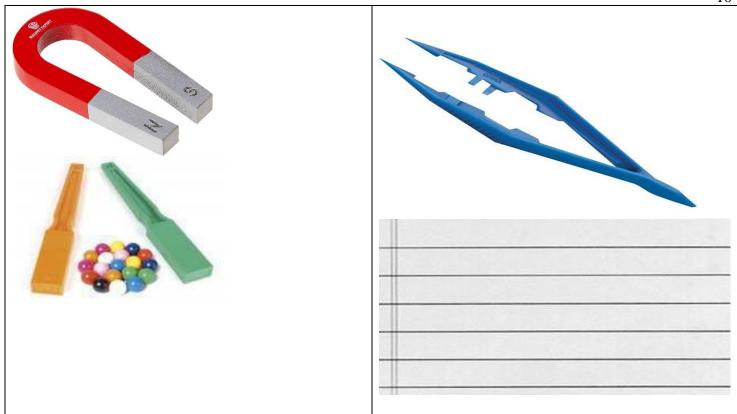
Part 2 Lesson 3




Divergent evolution: When a group from a specific population develops into a _____ species.

Draw an arrow from the person the star/their native country of origin as described in the slideshow.




Convergent Evolution: _____evolved structures in _____ animals.

Name the four types of beaks in the beak simulation? What types of seeds was each beak good at collecting? Was there a beak that was the overall best, and was there a beak that was the worst / would likely lead to extinction?

What did the bird beak activity tell us about natural selection?

Part 2 Lesson 5

Limiting Factors: A factor that causes a population to ______ in size.

Which is a density dependent, and which is a density independent factor?

-	7 1	<i>I</i> 1
	Disease, Parasites, Predators, Competition	Sunlight, Water, Temperature,
	Answer=	Answer=

R Species	K Species
Organism is very small size	Large Organism
Energy to make a new organism is low	Energy to make a new organism is high
Many babies made at once	Low number of babies made at a time
Early maturity	Long time for maturity
Short Life	Long Life
Each individual reproduces once and then dies	Individuals can reproduce many times throughout life

Name a species that is a R species and why? Name a species that is a K species and why? What are humans?

Describe how the types of feet below allow the bird to be successful at....? Describe why this is an adaptation.

Mallard duck

woodpecker

snow pheasant

finch

Part 2 Lesson 6

Coevolution: The evolution of _____ or more species, each adapting to changes in the other.

These ecological relationships include:

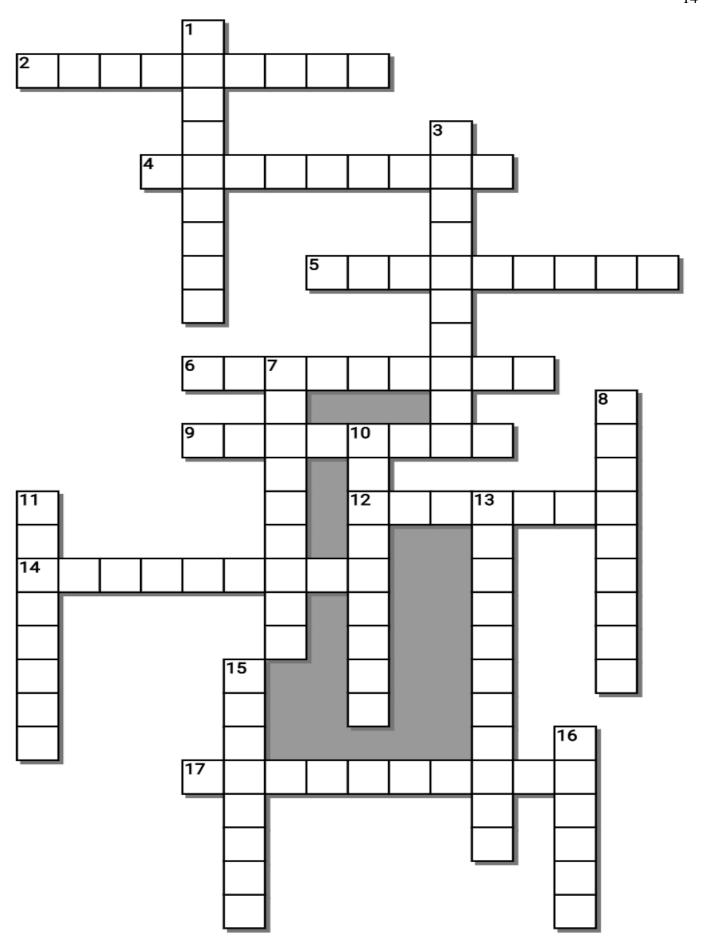
Predator/prey and parasite/host

Competitive species Mutualistic species

Mutualism: Both organisms _____

Types of mutualisms


Trophic mutualism: Both species help _____ each other.


-Usually nutrient related.

-Cleaning symbiosis: One species gets food and shelter, the other has ______ removed.

- -Defensive mutualisms: One species _____ the other and gets some benefits for its help.
- -Dispersive mutualisms: One species receives food in exchange for moving the of its partner.

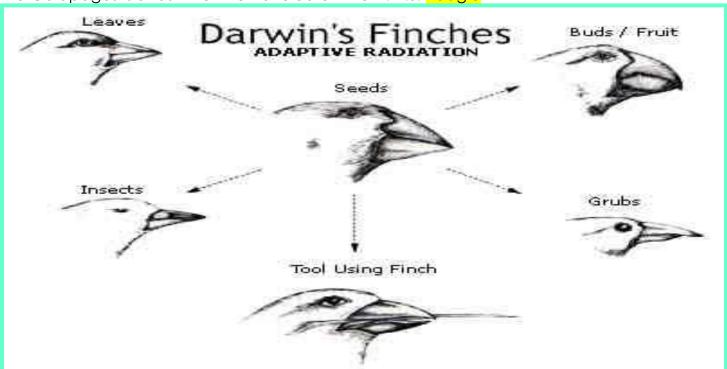
What is a symbiosis? Describe each type of mutualism next to the picture. Give me some specific details.

Across	Down
2. The ecological interaction between two or	1. Adaptive: A process in which
more species where each species has a net	organisms diversify rapidly from an ancestral
benefit. Mutualism is a common type of	species into a multitude of new forms,
ecological interaction.	particularly when a change in the
4 Islands: A volcanic archipelago	environment makes new resources available,
in the Pacific Ocean. It's considered one of	alters biotic interactions or opens new
the world's foremost destinations for	environmental niches.
wildlife-viewing. A province of Ecuador, it lies	3 Evolution: Similar evolved
about 1,000km off its coast. Its isolated	structures in unrelated animals.
terrain shelters a diversity of plant and	7 + Many Offspring + Heredity =
animal species, many found nowhere else.	Natural Selection.
5. Natural: Adaptations to the	8. Variation + Many + Heredity =
environment that do well replace poor ones.	Natural Selection.
Usually an advancement.	10 mutualisms: One species
6 Evolution: When a group	protects the other and gets some benefits for
from a specific population develops into a	its help.
new species.	11 symbiosis: One species gets
9. Variation + Many Offspring + =	food and shelter, the other has parasites
Natural Selection.	removed.
12. Darwins: A group of about 18	13. The evolution of two or more species,
species of passerine birds. They are well	each adapting to changes in the other.
known for their remarkable diversity in beak	15 Factors: A factor that causes
form and function.	a population to decrease in size.
14. The change in the heritable	16. Darwin made many of his observations
characteristics of biological populations over	while traveling on the H.M.S
successive generations. These	around the world.
characteristics are the expressions of genes	
that are passed on from parent to offspring	
during reproduction.	
17 mutualisms: One species	
receives food in exchange for moving the	

-----Teacher can remove this word bank to make crossword more challenging------**Possible Answers**

pollen or seeds of its partner.

BEAGLE, CLEANING, COEVOLUTION, CONVERGENT, DEFENSIVE, DISPERSIVE, DIVERGENT, EVOLUTION, FINCHES, GALAPAGOS, HEREDITY, LIMITING, MUTUALISM, OFFSPRING, RADIATION, SELECTION, VARIATION


Part 2 Natural Selection

Part 2 Lesson 1 The Galapagos

Name: Due:

Adaptive radiation: A process in which organisms diversify rapidly from an ancestral species into a multitude of new forms, particularly when a change in the environment makes new resources available, alters biotic interactions or opens new environmental niches.

Describe some of the finches that Darwin was able to observe and collect on his journey to the Galapagos Islands when he traveled on the H.M.S. Beagle

Teacher will break your class into six groups. Research the Galapagos Islands for 15 minutes.

- Be prepared to present to the class in any means you want.
- https://www.livescience.com/62902-galapagos-islands.html


Research for your chosen topics 1-6

Answers will vary

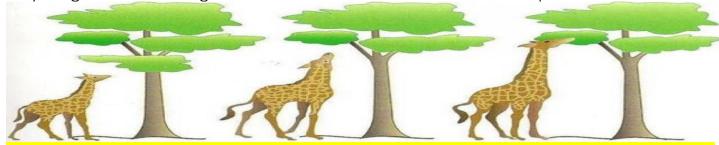
#1) Geography and History	#2) Geology
3) Climate	#4) Plants
#5) Animals	#6) Environmental Threats and Conservation Efforts

Part 2 Lesson 2

Describe some of the Hypotheticus beasts below as described in the slideshow. How have they changed?

Variation + Many Offspring + heredity = Natural Selection.

What animal adaptation are you choosing for your real story of evolution / How did that animal end up with that adaptation? Animal and Adaptation= Answers will vary but try and make sure story is evolution based / has some aspects of how animals actually change over time.


Brief Description of your story

Visual of main characters

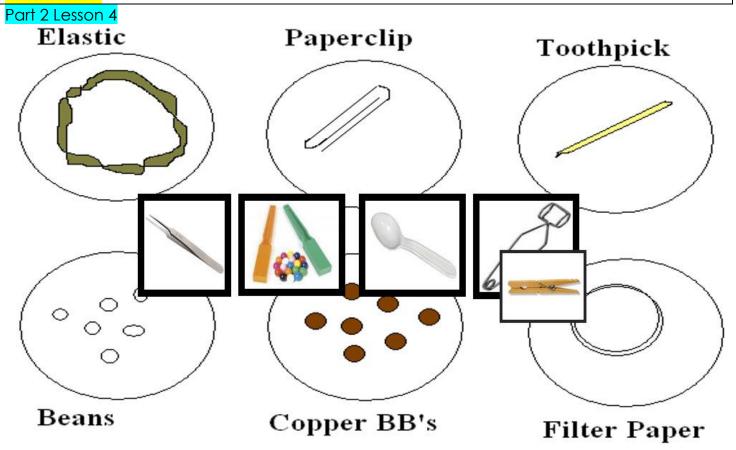
Title of the story:	Authors
How did the animal change?	
Did you like the story (1- 10 scale)?	NO 1 2 3 4 5 6 7 8 9 10 Yes
Why did you give it that rating?	
Title of the story:	Authors
How did the animal change?	
Did you like the story (1- 10 scale)?	NO 1 2 3 4 5 6 7 8 9 10 Yes
Why did you give it that rating?	

Part 2 Lesson 3

Why do giraffes have long necks. You should be able to answer this question now.

Since the days of Charles Darwin, the long necks of giraffes have been a textbook example of evolution. The theory goes that as giraffe ancestors competed for food, those with longer necks were able to reach higher leaves, getting a leg — or neck — up over shorter animals. Note: There is some debate about the evolutionary theory. Some biologists believe the longer neck makes them better neck fighters when the males are trying to find a mate.

Divergent evolution: When a group from a specific population develops into a new species.


Draw an arrow from the person the star/their native country of origin as described in the slideshow.

Convergent Evolution: Similar evolved structures in unrelated animals.

Anteaters represent convergent evolution because they all evolved similar structures to help them find food such as ants and termites. Long snouts, tongues, and claws help to be more successful. They all evolved into something similar independently / not from any recent ancestor.

Name the four types of beaks in the beak simulation? What types of seeds was each beak good at collecting? Was there a beak that was the overall best, and was there a beak that was the worst / would likely lead to extinction?

What did the bird beak activity tell us about natural selection?

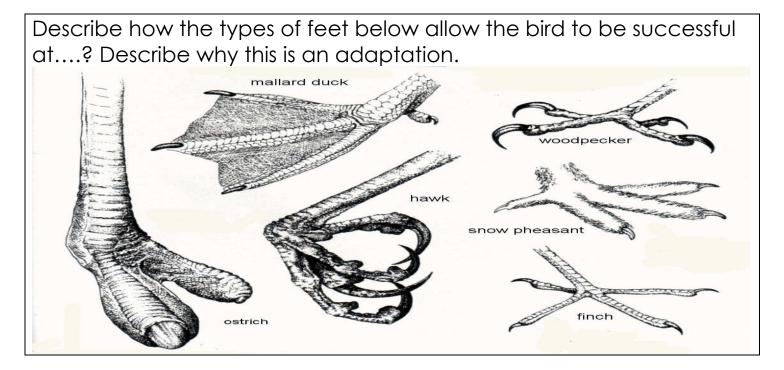
Part 2 Lesson 5

Limiting Factors: A factor that causes a population to decrease in size.

Which is a density dependent, and which is a density independent factor?

Disease, Parasites, Predators, Competition

Answer= Density Dependent (Living Factors such predators, parasites, competition with other species)


Sunlight, Water, Temperature,

Answer= Density Independent (Non-living / Abiotic)

R Species	K Species
Organism is very small size	Large Organism
Energy to make a new organism is low	Energy to make a new organism is high
Many babies made at once	Low number of babies made at a time
Early maturity	Long time for maturity
Short Life	Long Life
Each individual reproduces once and then dies	Individuals can reproduce many times throughout life

Name a species that is a R species and why? Name a species that is a K species and why? What are humans?

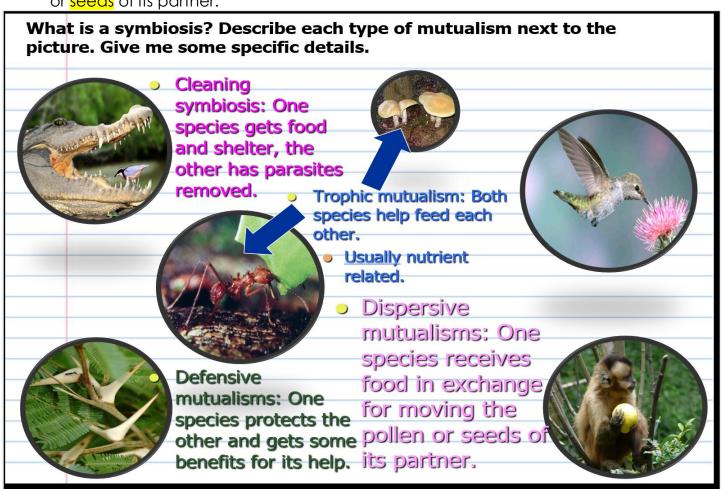
The Mosquito is an example of a R Species. It is small, can easily make hundreds of new mosquitos, has a short life, with early maturity. People are K Species that are large, takes lots of time and energy to make a new individual, has a long life where they can reproduce several times.

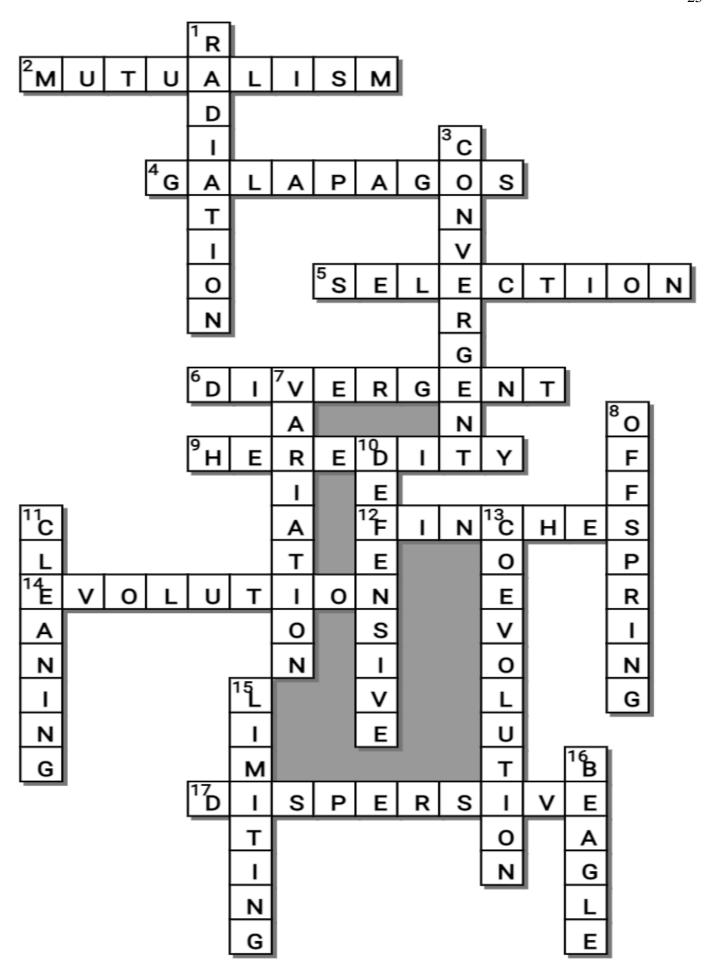
Answers vill vary but the Ostrich has great feet for runing on the ground at high speeds, the ducks has webbed feet for paddling through the water, the Wood pecks can cling to the sides of trees, the Hawk can kill and grasp prey, the snow pheasant feet can stay warm in the cold, and the finch has all purpose feet and can perch well.

Part 2 Lesson 6

Coevolution: The evolution of two or more species, each adapting to changes in the other.

These ecological relationships include:


Predator/prey and parasite/host Competitive species Mutualistic species


Mutualism: Both organisms benefit

Types of mutualisms

Trophic mutualism: Both species help feed each other.

- -Usually nutrient related.
- -Cleaning symbiosis: One species gets food and shelter, the other has parasites removed.
- -Defensive mutualisms: One species protects the other and gets some benefits for its help.
- -Dispersive mutualisms: One species receives food in exchange for moving the pollen or seeds of its partner.

Across Down 2. The ecological interaction between two or 1. Adaptive _____: A process in which more species where each species has a net organisms diversify rapidly from an ancestral benefit. Mutualism is a common type of species into a multitude of new forms, ecological interaction. particularly when a change in the 4. _____ Islands: A volcanic archipelago environment makes new resources available. in the Pacific Ocean. It's considered one of alters biotic interactions or opens new the world's foremost destinations for environmental niches. wildlife-viewing. A province of Ecuador, it lies 3. _____ Evolution: Similar evolved structures in unrelated animals. about 1,000km off its coast. Its isolated terrain shelters a diversity of plant and 7. _____ + Many Offspring + Heredity = animal species, many found nowhere else. Natural Selection. 5. Natural _____: Adaptations to the 8. Variation + Many _____ + Heredity = environment that do well replace poor ones. Natural Selection. 10. _____ mutualisms: One species Usually an advancement. protects the other and gets some benefits for 6. _____ Evolution: When a group from a specific population develops into a its help. 11. _____ symbiosis: One species gets new species. 9. Variation + Many Offspring + ____ = food and shelter, the other has parasites Natural Selection. removed. 12. Darwins _____: A group of about 18 13. The evolution of two or more species, species of passerine birds. They are well each adapting to changes in the other. known for their remarkable diversity in beak 15. _____ Factors: A factor that causes a population to decrease in size. form and function. 14. The change in the heritable 16. Darwin made many of his observations characteristics of biological populations over while traveling on the H.M.S _____ successive generations. These around the world. characteristics are the expressions of genes that are passed on from parent to offspring during reproduction. 17. _____ mutualisms: One species receives food in exchange for moving the

-----Teacher can remove this word bank to make crossword more challenging------**Possible Answers**

pollen or seeds of its partner.

BEAGLE, CLEANING, COEVOLUTION, CONVERGENT, DEFENSIVE, DISPERSIVE, DIVERGENT, EVOLUTION, FINCHES, GALAPAGOS, HEREDITY, LIMITING, MUTUALISM, OFFSPRING, RADIATION, SELECTION, VARIATION