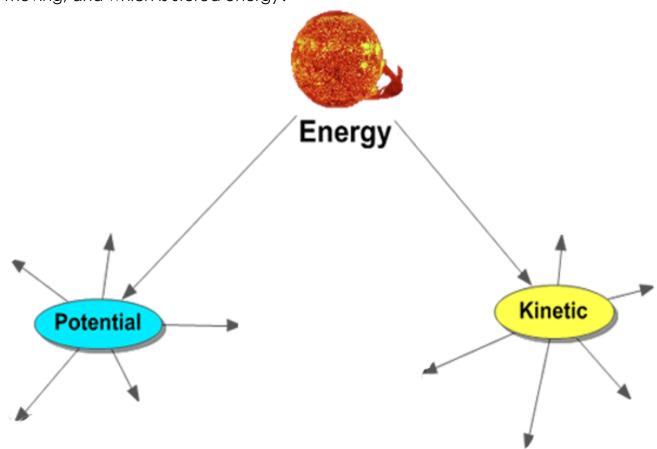
Part 3 Forms of Energy

Name:


Part 3 Lesson 1

What is...

Part 3 Lesson 2 More About Forms of Energy

The seven forms of energy All Energy is Potential or Kinetic

Please provide some forms of potential and kinetic energy below. Which one has energy from moving, and which is stored energy?

The Forms of Energy

Mechanical (PE+KE) Potential is stored Energy, Kinetic is moving

Sound (Kinetic)

Chemical (Potential)

Electrical (Kinetic)

Light / Radiant (Kinetic)

Heat / Thermal (Kinetic)

Nuclear (Potential)

Gravitational (Potential)

Which medium does sound travel the fastest in? Can you mention how it travels in each?

- A.) Gas (Air)
- B.) Liquid (Water)
- C.) Solid

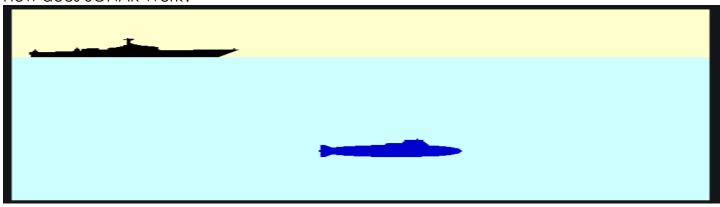
Times have Change Trial Study

- -Choose a partner for this project that was not next to you during random order collection.
- -Keep your random test order hidden from your new partner / listener.
- -Listener should keep eyes closed during each drop and until pennies have been collected.
- -Old and new pennies look differently.
- -Tester and listener must communicate for each drop. Tester says "dropping" and listener says "drop away." -Listener can open eyes when tester says pennies have been collected and mark their guess on the listener spreadsheet.

	•					
	10	21	_	n	е	п
_		31	ᆮ			П

Trials	1	2	3	4	5	6	7	8	9	10
Old										
New										
Correct √ Wrong X										

The number correct out of 10. ____/10


Tester (Make random "Old" or "New" 1-10)

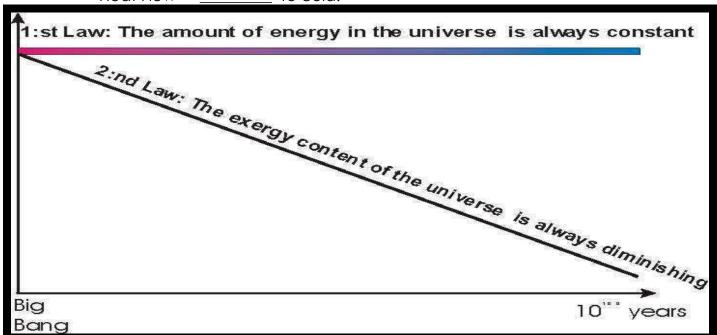
Trials	1	2	3	4	5	6	7	8	9	10
Old										
New										

Collect the class data. Total score of class divided by the number of students.
Total Score / number of students = Average
Did we answer the problem? Can you determine the age of a penny by the sound that it makes when dropped? Use data in your response.

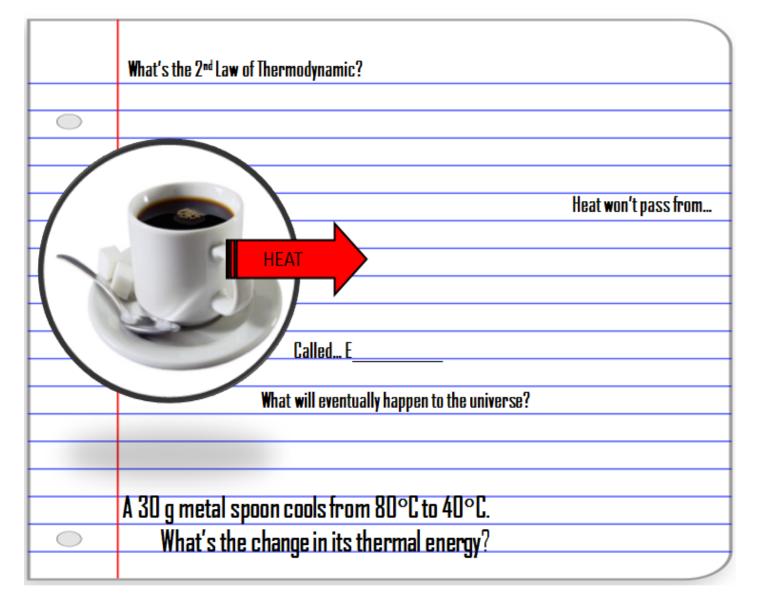
Finding Standard Deviation and Variance.

														7
						•	e root (quare				the me	ean.		
	 The mean / average was Everyone calculate how far away their data was from the mean / average. Ex.) The mean was 80 and I got 60 so I was 20 from the mean. To calculate the variance, take each difference, square it, and then average the result as a class. 													
		•	Ex) 22	+ 4.52	+ 1.52	+ 3.52	2 + (res	t of clc	ass)					
D)ivide	by to	tal#o	of stude	ents = v	varian	ce							
• TI					•	•	are roo		ne Vari	ance.				
Exampl	е	•	√6523	= 80	.76%									
Class d	ata \	/arian	се		Г		1		Г		Г			
Total fro	om a	bove _		/ r	numbe	er of stu	udents <u>.</u>		=_			Varian	се	
V	Vari	ance :	=		% Stan	dard [Deviati	on						
We nov probler		ve a st	andar	d to sh	iow wh	nich sc	ores ar	e high	and lo	ow and	d to he	elp ans	wer ou	ır
What w	as y	our sco	ore cor	mpare	d to th	ne Star	ndard [Deviati	ion? V	Vere yo	ou abc	ove or l	below	?

Thermal Energy: The total The more kinetic energy an object has, the more also deals with the number of particles that are for	it has. Thermal energy
The faster the particles are moving, the	•
1st Law of Thermodynamics	
Change in energy of a system is the work done.	to the heat added to the system
Youget something for	nothing.



Work Done


2nd Law: The energy content of the universe is always _____ in quality.

• Heat Flow -> _____ to cold.

What do think it means?

- A.) Quality equals the most triangles times the speed of light.
- B.) Heat equals the most time change times the number of calories present.
- C.) Thermal change equals the mass of an object times the change in temperature times the specific heat of the object.
- D.) An object can go against the second law of thermodynamics.

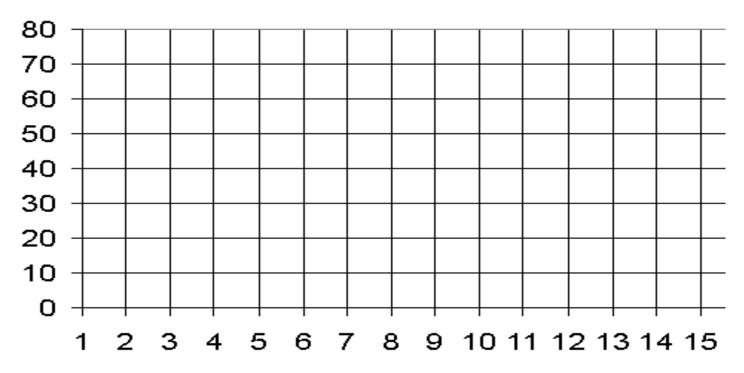
A 45 g metal spoon cools from $/0^{\circ}$ C to 30° C.	$Q = M \times I \times C$
What's the change in its thermal energy	Thermal change equals the mass of an
	object times the change in temperature
	times the specific heat of the object.
	-What's the thermal change of a .05 kg silver
	spoon that was heated from a temperature
	of 20°C to 80°C?
	Silver's specific heat is .23 (kJ/kg K)

The third law of thermodynamics: All molecular stops at absolute zero.
The third law of thermodynamics: All molecular movement stops at
What happens at Zero °K? Can you describe what temperature is?
Absolute Zero
-273.15° C
-459.67° F
0° K
Temperature: The degree of hotness or coldness of a body or environment. Corresponds to its activity.
Part 3 Lesson 4 Heat Transfer
Thermal Energy: The total of particles that make up an object. The more kinetic energy an object has, the more energy it has. Thermal energy also deals with the number of particles that are found in an object. The faster the particles are , the the object becomes.
Convection: Vertical circulation in which warm and cool Flow of heat by this circulation.
Conduction: The movement of heat from one to another.
Which is Convection, Conduction, and Radiation? Explain Why beneath?

Temperature / Measuring Conduction

- -Place a Styrofoam cup and wax paper or thin plastic cup into two similar containers.
- -Place weights into each cup so the container cannot float.
- -Place thermometers in each cup at the same place.
- -Place ice cubes all around the two cups but not in the cup.
- -Teacher to pour hot liquid into container (not into cup with weights). Start Timer on board.

 Styrofoam Cup


 Plastic Cup

Large plastic Containers Pack ice around both cups. Not in c Pour warm beverage into cups at same ti	

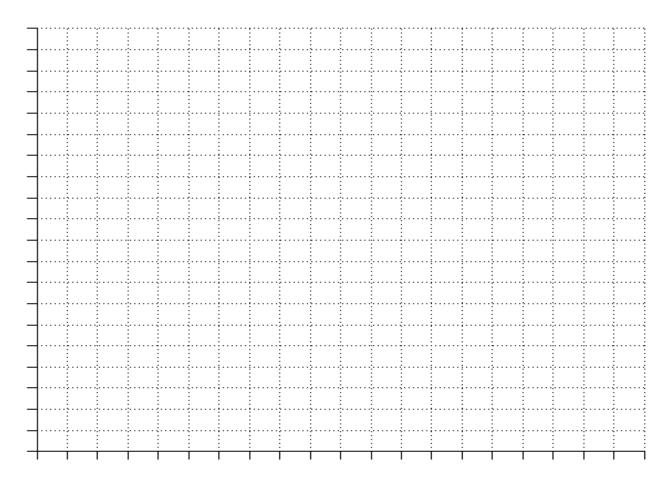
Minutes	Styrofoam Cup Temp (C)	Plastic Cup Temp (C)
1 Start		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
△°T (Change in Temp).	△ °T	△ °T

Please graph the differences in temperature °C over time in the blank graph below. Please label each axis. Could use a line graph. Use colors

□Styrofoam Cup □Plastic Cup

Which cup was the better insulator of heat? That is, the heat did not escape as easy. Please use data in your response.
Which cup was the better conductor of heat? That is, the heat escaped more easily. Please use data in your response.
"Where did the heat go?" Explain

Part 3 Lesson 5 Radiation


Radiation: Energy that is radiated or transmitted in the form of _____, ____, or particles.

Minutes	Gravel Temp (C) Light	Gravel Temp (C) (Dark)
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		

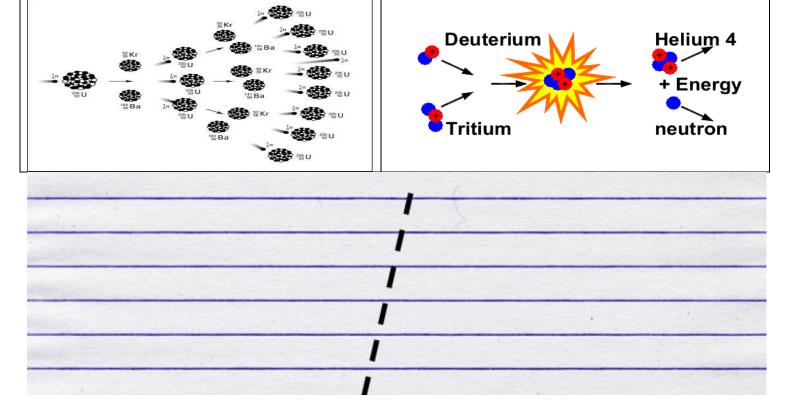
- -Set-up two clear containers with gravel.
- -Place thermometers into gravel.
- -Set-up a lamp that emits sufficient light / heat and place over one gravel container.
- -Place other container nearby but not under the light.
- -Record the temperatures of each container every minute until temperature stabilizes.

Please graph your results and then discuss them.

Make a conclusion about heat transfer in the space below for this activity.						

Which is convection, conduction, and radiation to pop some popcorn?

Quiz Wiz! Word Bank: Convection, Conduction, or Radiation.


1)	2)	3)	4)
5)	6)	7)	8)
9)	10)	*11)	

Nuclear Energy: The energy that deals with the changes in the nucleus of an_____.

Nuclear energy is produced when the nuclei of two atoms join together

(______) or when the nucleus of an atom splits apart (______).

Which is fusion and which is fission? Explain

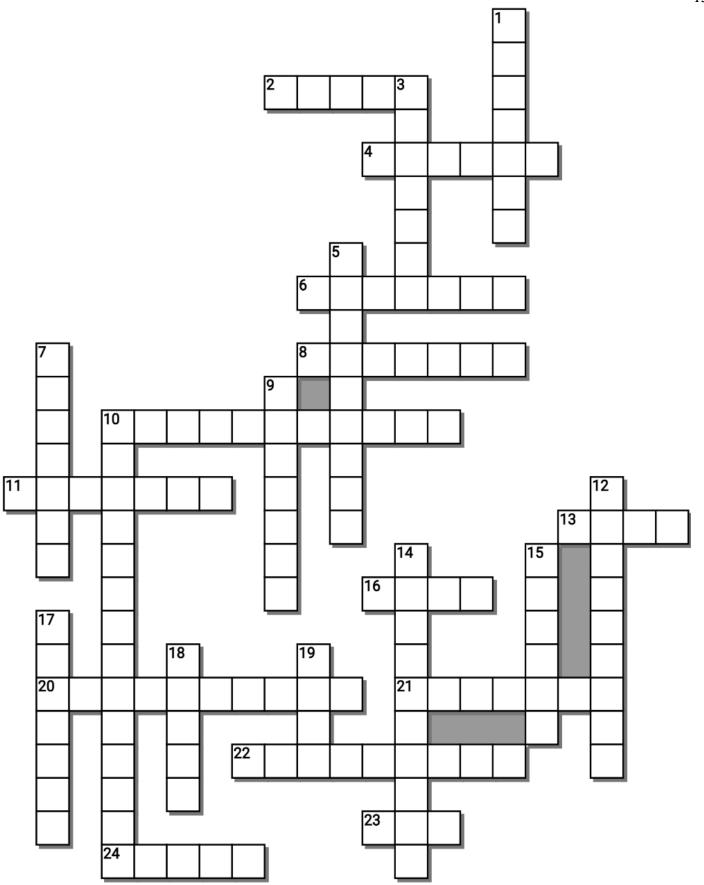
Part 3 Lesson 6 Quiz and Wrap Up

Quiz Wiz – Name the form of energy from the list of 7. 3 will be used twice.

 Some pictures may show more than one form of energy. A strong response will identify these slides.

,			
1)	2)	3)	4)
5)	6)	7)	8)
9)	10)	*11)	*12)

Use the car below to demonstrate knowledge of the seven forms of energy. Make sure to check off each box after you have drawn your specific example. Use text to support your drawings.


□Mechanical	□Sound	□Chemical	□Electrical	□Light/EM	□Thermal	□Nuclear
-------------	--------	-----------	-------------	-----------	----------	----------

ACTOSS	Down
2 Energy: Produced by the	 Nuclear energy is produced when the
vibrations of electrically charged particles.	nuclei of two atoms join together (fusion) or
This energy is a form of kinetic energy.	when the nucleus of an atom splits apart
4. A temperature scale based on absolute	().
zero where molecular motion stops. That is	3 Energy: The total kinetic energy
the coldest something can be. (Never been	of particles that make up an object. The
reached.)	more kinetic energy an object has, the more
6. 100 degrees Celsius is the point of	thermal energy it has.
water.	5. All Energy is or Kinetic
8. 0 Degrees is the freezing point of	7. 2nd Law: The energy content of the
water.	universe is always diminishing in q
10. The degree of hotness or coldness of a	9. Energy cannot be or
body or environment. Corresponds to its	destroyed but can diminish in quality from
molecular activity.	useful to less useful.
11. All Energy is Potential or	10. 1st Law of Change in
13. The third law of thermodynamics: All	energy of a system is equal to the heat
molecular movement stops at absolute	added to the system minus the work done.
16. Energy can be transformed from one	You can't get something for nothing.
to another.	12. Energy cannot be created or
20. The movement of heat from one	but can diminish in quality
molecule to another.	from useful to less useful.
21. The degradation of the matter and	14. Vertical circulation in which warm rises
energy in the universe to an ultimate state of	and cool sinks. Flow of heat by this
inert uniformity.	circulation.
22. Energy that is radiated or transmitted in	15. Nuclear energy is produced when the
the form of rays, waves, or particles.	nuclei of two atoms join together ()
23. Heat Flow -> to cold.	or when the nucleus of an atom splits apart
24. Sound travels fastest through a	(fission).
	17 Energy: The energy that deals
	with the changes in the nucleus of an atom.
	18. There's no such thing as a free
	19. Heat Flow -> Hot to
Teacher can remove this word be	ank to make more difficult

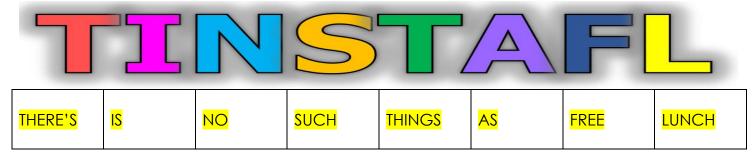
CELSIUS, COLD, CONDUCTION, CONVECTION, ENTROPY, FISSION, FUSION, HOT, KELVIN, KINETIC, LIGHT, LUNCH, NUCLEAR, POTENTIAL, RADIATION, SOLID, TEMPERATURE, THERMAL, THERMODYNAMICS, ZERO, BOILING, CREATED, DESTROYED, FORM, QUALITY

Part 3 Forms of Energy

1-20 = 5 pts Part 3 Lesson 7 *20-*25 * = Bonus + 1 pt, (Secretly write owl in correct space +1 pt) Final Question = 5 pt wager Name: Due: Today

Score ____ / 100

LUNCH SPECIAL	MAINTAIN YOUR FORM	нот ѕнот	SOME LIKE IT HOT	FEEL THE POWER Bonus round 1pt each
1)	6)	11)	16)	*21)
2)	7)	12)	17)	*22)
3)	8)	13)	18)	*23)
4)	9)	14)	19)	*24)
5)	10)	15)	20)	*25)

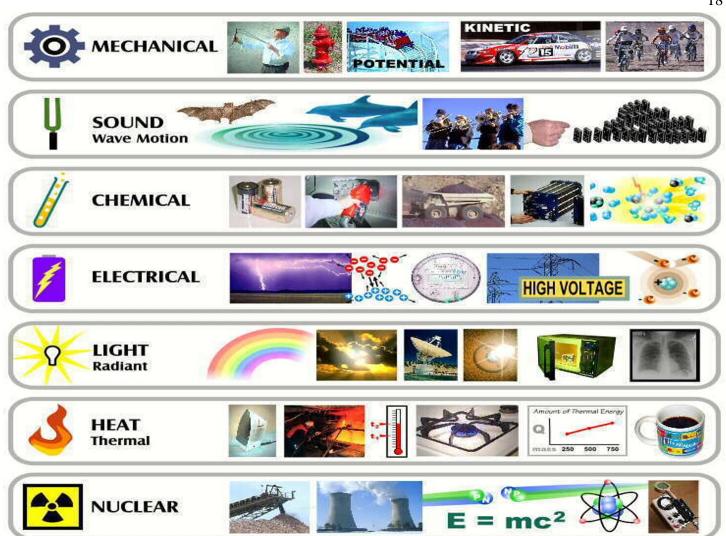

Final Question Wager _____/5_ Answer: _____

Part 3 Forms of Energy

Name:

Part 3 Lesson 1

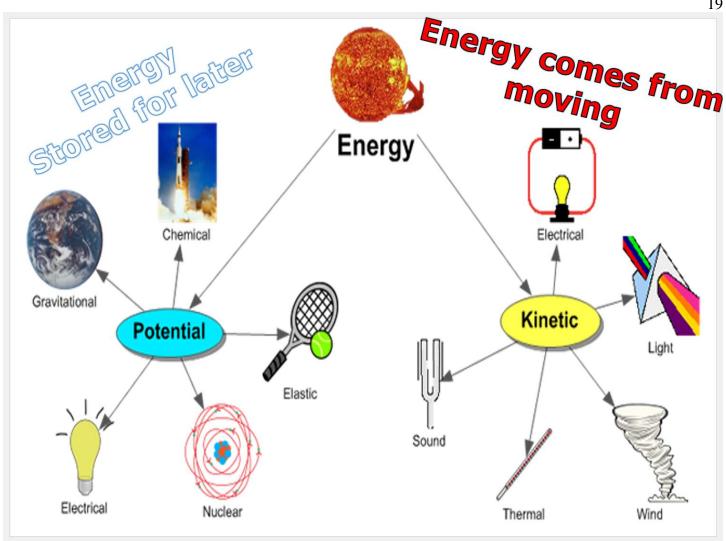
What is...


Law Conservation of Energy

Energy cannot be created or destroyed but can diminish in quality from useful to less useful.

Energy comes from somewhere – Nothing is free.

Energy can be transformed from one form to another.


Please use the pictures to fill-in the blanks with the correct form of energy

Part 3 Lesson 2 More About Forms of Energy

The seven forms of energy All Energy is Potential or Kinetic

Please provide some forms of potential and kinetic energy below. Which one has energy from moving, and which is stored energy?

The Forms of Energy

Mechanical (PE+KE) Potential is stored Energy, Kinetic is moving

Sound (Kinetic)

Chemical (Potential)

Electrical (Kinetic)

Light / Radiant (Kinetic)

Heat / Thermal (Kinetic)

Nuclear (Potential)

Gravitational (Potential)

Which medium does sound travel the fastest in? Can you mention how it travels in each?

- A.) Gas (Air)
- B.) Liquid (Water)
- C.) Solid

Times have Change Trial Study

- -Choose a partner for this project that was not next to you during random order collection.
- -Keep your random test order hidden from your new partner / listener.
- -Listener should keep eyes closed during each drop and until pennies have been collected.
- -Old and new pennies look differently.
- -Tester and listener must communicate for each drop. Tester says "dropping" and listener says "drop away." -Listener can open eyes when tester says pennies have been collected and mark their guess on the listener spreadsheet.

Listener

Trials	1	2	3	4	5	6	7	8	9	10
Old										
New										
Correct √ Wrong X										

The number correct out of 10. ____ / 10

Tester (Make random "Old" or "New" 1-10)

103101	Make Iai		IG OI 14	C ** 1 - 1 O	,					
Trials	1	2	3	4	5	6	7	8	9	10
Old										
New										

Collect the class data.	Total score of class	divided by t	he number of students.
Total Score,	number of students	<u> </u>	Average

Did we answer the problem? Can you determine the age of a penny by the sound that it makes when dropped? **Use data in your response**.

The data will determine the answer to this question. A skilled listener can determine the age of the penny by the sound it makes. Pennies made after 1982 are mostly Zinc compared to pennies before 1982 which are mostly copper and only 5% Zinc. That difference is noticeable when it lands on a desk.

Finding Standard Deviation and Variance.

- Standard variation is the square root on the variance.
- Variance: The average of the squared differences from the mean.
- The mean / average was...
- Everyone calculate how far away their data was from the mean / average.
 - Ex.) The mean was 80 and I got 60 so I was 20 from the mean.
- To calculate the variance, take each difference, square it, and then average the result as a class.
 - Ex) 22 + 4.52 + 1.52 + 3.52 + (rest of class)

Divide by total # of students = variance

- The Standard Deviation is just the square root of the Variance.
 - So square the variance that we found.

Example...
$$\sqrt{6523} = 80.76\%$$

Class	ciass adia variance												

Total from above	/ number of students	=	Variance

We now have a standard to show which scores are high and low and to help answer our problem.

What was your score compared to the Standard Deviation? Were you above or below?

Answer will vary

Part 3 Lesson 3 More Thermodynamics

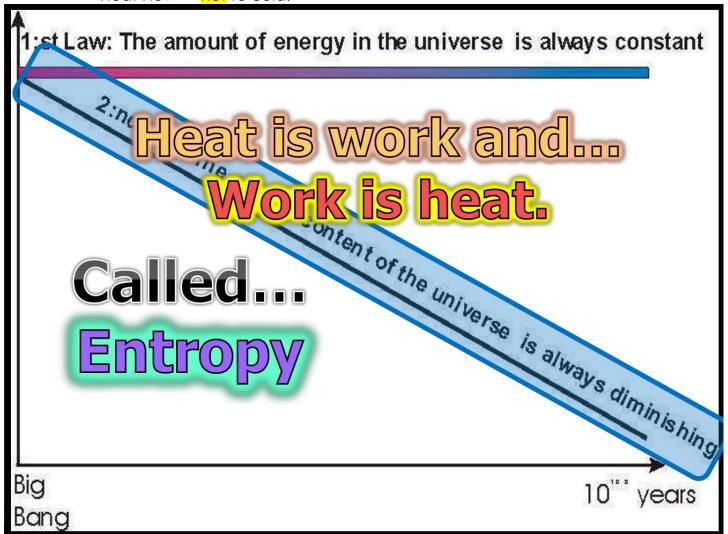
How does SONAR Work?

ع مربح الملام المعلم ما معلم المعلم المعلم المعلم

SONAR is a technique that uses sound waves to map or locate objects in the surrounding environment. First, emit a cluster of sound waves in the direction of an object. While a few waves will bounce off it, the remaining waves will be reflected back in the direction of the emitter. This information can then be used to determine a variety of things about the environment.

Thermal Energy: The total kinetic energy of particles that make up an object. The more kinetic energy an object has, the more thermal energy it has. Thermal energy also deals with the number of particles that are found in an object. The faster the particles are moving, the hotter the object becomes.

1st Law of Thermodynamics


Change in energy of a system is equal to the heat added to the system minus the work done.

You cannot get something for nothing.

2nd Law: The energy content of the universe is always diminshing in quality.

Heat Flow -> hot to cold.

 $Q = M \times T \times C$

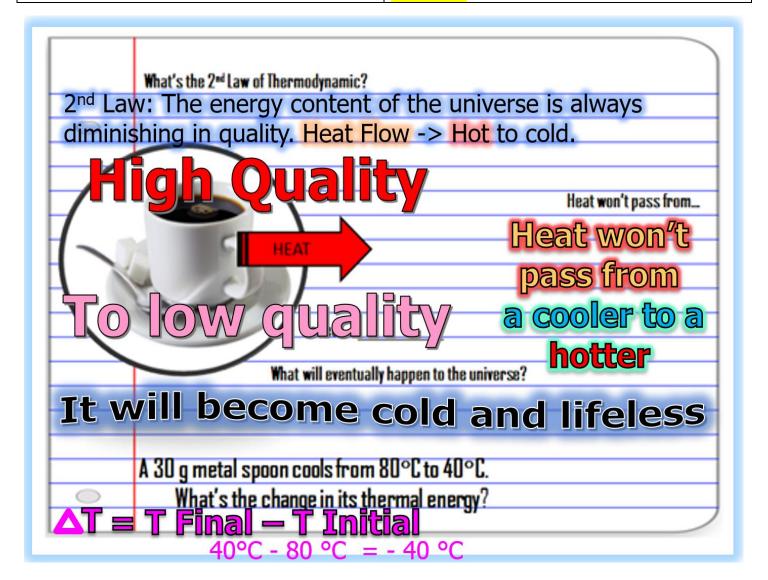
What do think it means?

- A.) Quality equals the most triangles times the speed of light.
- B.) Heat equals the most time change times the number of calories present.

- C.) Thermal change equals the mass of an object times the change in temperature times the specific heat of the object.
- D.) An object can go against the second law of thermodynamics.

A 45 g metal spoon cools from 70°C to 30°C. What's the change in its thermal energy Delta T – Temp Final – Temp Initial 30° C - 70° C = - 40° C

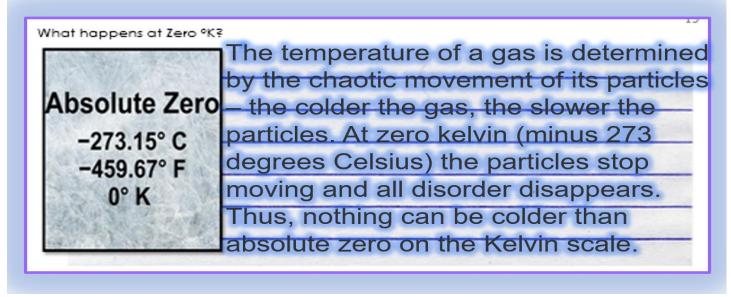
 $Q = M \times T \times C$


Thermal change equals the mass of an object times the change in temperature times the specific heat of the object.

-What's the thermal change of a .05 kg silver spoon that was heated from a temperature of 20°C to 80°C?

Silver's specific heat is .23 (kJ/kg K)

 $Q = .05 \text{ kg x} 60^{\circ}\text{C x .23 (kJ/kg K)}$


Q = .690 J

The third law of thermodynamics: All molecular motion stops at absolute zero.

The third law of thermodynamics: All molecular movement stops at absolute zeo.

What happens at Zero °K? Can you describe what temperature is?

Temperature: The degree of hotness or coldness of a body or environment.

Corresponds to its molecular activity.

Part 3 Lesson 4 Heat Transfer

Thermal Energy: The total kinetic energy of particles that make up an object. The more kinetic energy an object has, the more thermal energy it has. Thermal energy also deals with the number of particles that are found in an object.

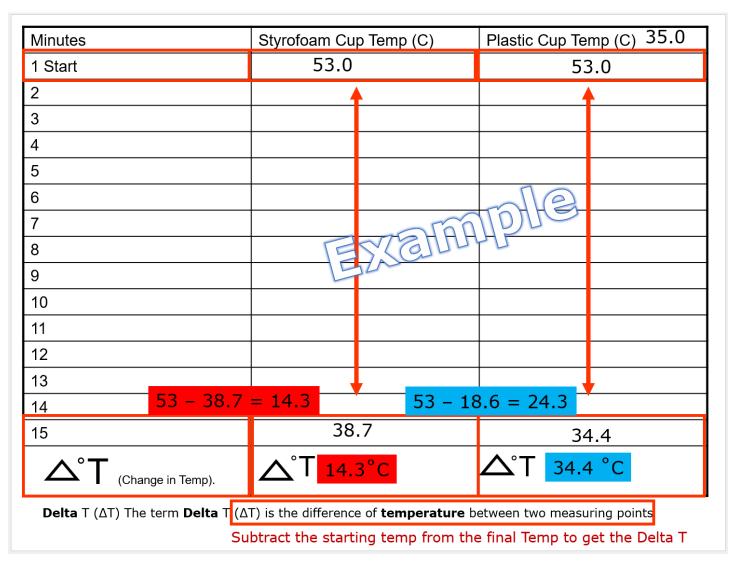
The faster the particles are moving, the hotter the object becomes.

Convection: Vertical circulation in which warm rises and cool sinks. Flow of heat by this circulation.

Conduction: The movement of heat from one molecule to another.

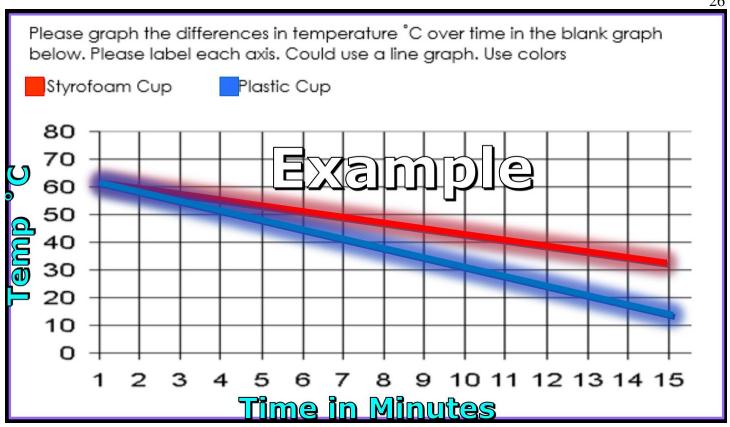
Which is Convection, Conduction, and Radiation? Explain Why beneath?

Temperature / Measuring Conduction


- -Place a Styrofoam cup and wax paper or thin plastic cup into two similar containers.
- -Place weights into each cup so the container cannot float.
- -Place thermometers in each cup at the same place.

- -Place ice cubes all around the two cups but not in the cup.
- -Teacher to pour hot liquid into container (not into cup with weights). Start Timer on board.

 Styrofoam Cup


 Plastic Cup

Please graph the differences in temperature °C over time in the blank graph below. Please label each axis. Could use a line graph. Use colors

□Styrofoam Cup □Plastic Cup

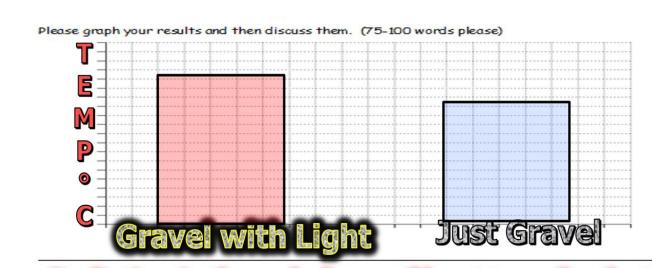
Which cup was the better insulator of heat? That is, the heat did not escape as easy. Please use data in your response.

The Styrofoam Cup was the better insulator of heat compared to the plastic cup. Student should use data in this response.

Which cup was the better conductor of heat? That is, the heat escaped more easily. Please use data in your response.

The Plastic Cup was the better conductor of heat compared to the plastic cup. Student should use data in this response.

"Where did the heat go?" Explain. The heat did not disappear, it was lost to the surrounding environment. The air around the cup may have heated up, the ice cubes would have absorbed the heat and began to melt. The heat went from hot to cold, or from high quality to low quality.


Part 3 Lesson 5 Radiation

Radiation: Energy that is radiated or transmitted in the form of waves, rays, or particles.

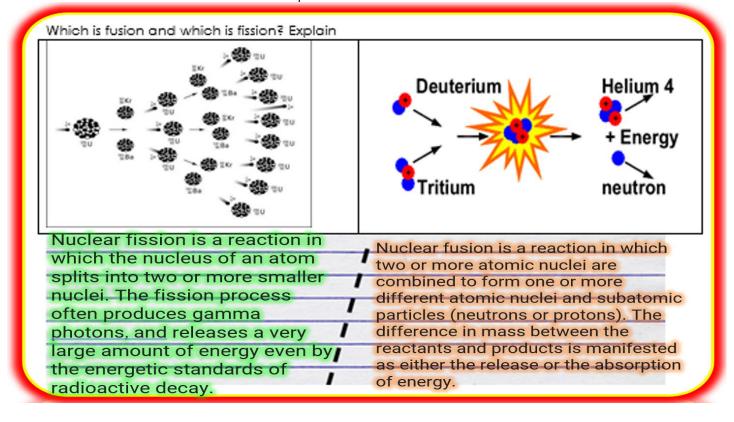
- -Set-up two clear containers with gravel.
- -Place thermometers into gravel.
- -Set-up a lamp that emits sufficient light / heat and place over one gravel container.
- -Place other container nearby but not under the light.
- -Record the temperatures of each container every minute until temperature stabilizes.

Please graph your results and then discuss them.

Radiation is the only form of heat transfer that does not require a material to transmit the heat. The light source was emitting radiation through the air. Radiative heat was transferred from the gravel to the thermometer. The gravel once heated, released the heat via conduction or convection to the surroundings.

Conduction

Radiation

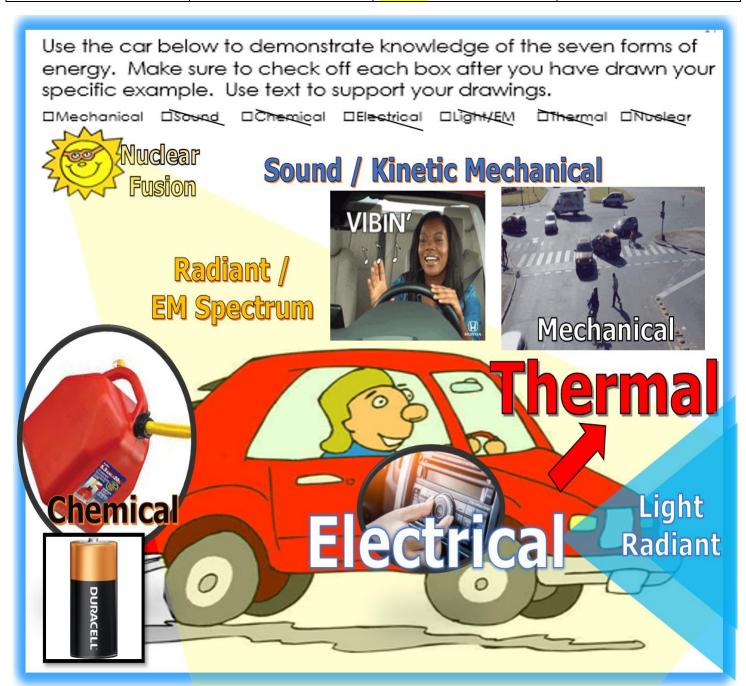

Quiz Wiz! Word Bank: Convection, Conduction, or Radiation.

1) Convection	2) Conduction	3) Convection	4) Radiation
5) Conduction	6) Convection	7) Radiation	8) Convection
9) Radiation	10) Conduction	*11) <mark>Odie</mark>	

Nuclear Energy: The energy that deals with the changes in the nucleus of an atom.

Nuclear energy is produced when the nuclei of two atoms join together (fusion) or when the nucleus of an atom splits apart (fission).

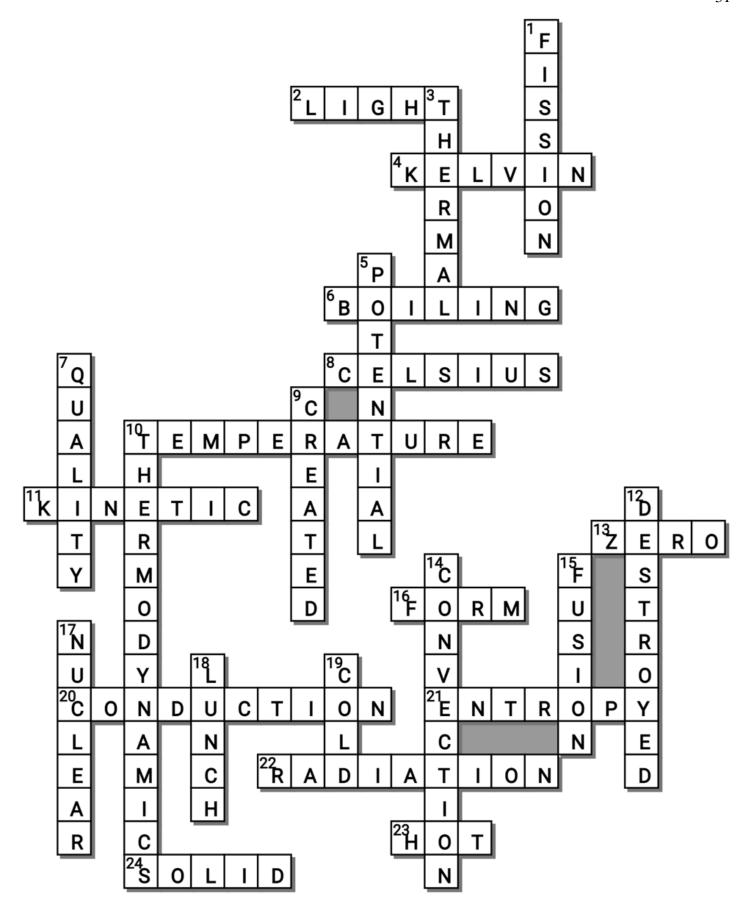
Which is fusion and which is fission? Explain



Part 3 Lesson 6 Quiz and Wrap Up

Quiz Wiz – Name the form of energy from the list of 7. 3 will be used twice.

 Some pictures may show more than one form of energy. A strong response will identify these slides.


1derinity 111030 311d03:					
1) Electrical	2) Thermal	3) Chemical	4) Radiant		
	Hot Dog is chemical		Thermal, Nuclear		
5) Mechanical	<mark>6) Sound</mark>	<mark>7) Nuclear</mark>	8) Mechanical		
	Mechanical Kinetic				
<mark>9) Thermal</mark>	10) Radiant	*11) Doc Emit	*12) Fusion		
<u>Chemica</u>	X-Ray Em Wave	Brown Back to the			
		<mark>Future</mark>			

Across	Down		
2 Energy: Produced by the	1. Nuclear energy is produced when the		
vibrations of electrically charged particles.	nuclei of two atoms join together (fusion) or		
This energy is a form of kinetic energy.	when the nucleus of an atom splits apart		
4. A temperature scale based on absolute	().		
zero where molecular motion stops. That is	3 Energy: The total kinetic energy		
the coldest something can be. (Never been	of particles that make up an object. The		
reached.)	more kinetic energy an object has, the more		
6. 100 degrees Celsius is the point of	thermal energy it has.		
water.	5. All Energy is or Kinetic		
8. 0 Degrees is the freezing point of	7. 2nd Law: The energy content of the		
water.	universe is always diminishing in q		
10. The degree of hotness or coldness of a	9. Energy cannot be or		
body or environment. Corresponds to its	destroyed but can diminish in quality from		
molecular activity.	useful to less useful.		
11. All Energy is Potential or	10. 1st Law of Change in		
13. The third law of thermodynamics: All	energy of a system is equal to the heat		
molecular movement stops at absolute	added to the system minus the work done.		
16. Energy can be transformed from one	You can't get something for nothing.		
to another.	12. Energy cannot be created or		
20. The movement of heat from one	but can diminish in quality		
molecule to another.	from useful to less useful.		
21. The degradation of the matter and	14. Vertical circulation in which warm rises		
energy in the universe to an ultimate state of	and cool sinks. Flow of heat by this		
inert uniformity.	circulation.		
22. Energy that is radiated or transmitted in	15. Nuclear energy is produced when the		
the form of rays, waves, or particles.	nuclei of two atoms join together ()		
23. Heat Flow -> to cold.	or when the nucleus of an atom splits apart		
24. Sound travels fastest through a	(fission).		
	17 Energy: The energy that deals		
	with the changes in the nucleus of an atom.		
	18. There's no such thing as a free		
	19. Heat Flow -> Hot to		
Teacher can remove this word h	ank to make more difficult		
reacher carriernove mis word b	ULIK TO THUKE THOLE CHILICUIT		

Possible Answers

CELSIUS, COLD, CONDUCTION, CONVECTION, ENTROPY, FISSION, FUSION, HOT, KELVIN, KINETIC, LIGHT, LUNCH, NUCLEAR, POTENTIAL, RADIATION, SOLID, TEMPERATURE, THERMAL, THERMODYNAMICS, ZERO, BOILING, CREATED, DESTROYED, FORM, QUALITY

Part 3 Forms of Energy

1-20 = 5 pts Part 3 Lesson 7 *20-*25 * = Bonus + 1 pt, (Secretly write owl in correct space +1 pt) Final Question = 5 pt wager Name: Due: Today

Score ____ / 100

LUNCH SPECIAL	MAINTAIN YOUR FORM	нот ѕнот	SOME LIKE IT HOT	FEEL THE POWER Bonus round 1pt each
There Is No Such Thing As A Free Lunch	6) Potential or Kinetic	A=Fission B=Fusion	16) Entropy	*21) Dodgeball
2) Created Destroyed Useful	7) Air Liquid Solid	12) Radiant / Light	17) 2 nd Law of Thermodynamics	*22) Syndrome
3) Ist Law of Thermodynamics	8) Sonar	TRUE	18) Absolute Zero 0°K	*23) Nuclear Power Plant
4) Chemical Electrical Light Heat	9) Electrons	Change in Temp is = -60°C	A=Conduction B=Convection C= Radiation	*24) <mark>Count</mark> Dooku
5) Mechanical Sound Nuclear (Owl +1pt)	10) A=Thermal B=Chemical	15) Q = .690 J	20) Radiation Convection Conduction	*25) A Power Play

Final Question Wager _____/5_ Answer: <u>A=Electrical, B=Chemical, C=Mechanical, D=Thermal, E=Nuclear</u>