Part 4 Organelles

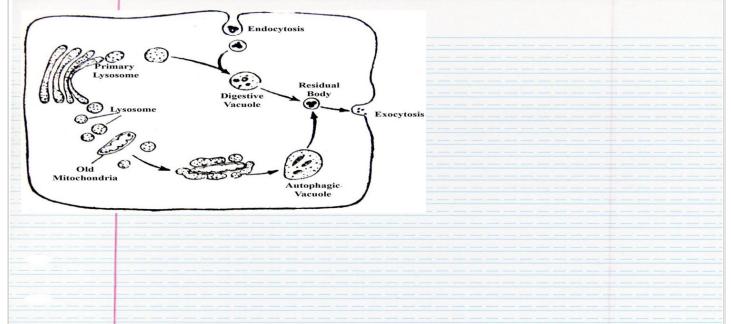
Name:

Part 1	Lesson	11	1/C	000	ma

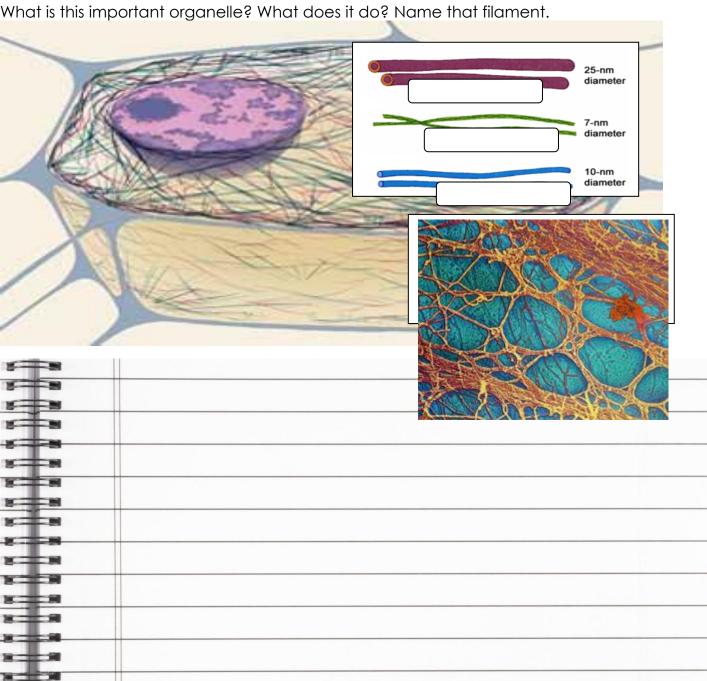
Cellular Organelles: A membrane-bound compartment or structure in a cell that performs a

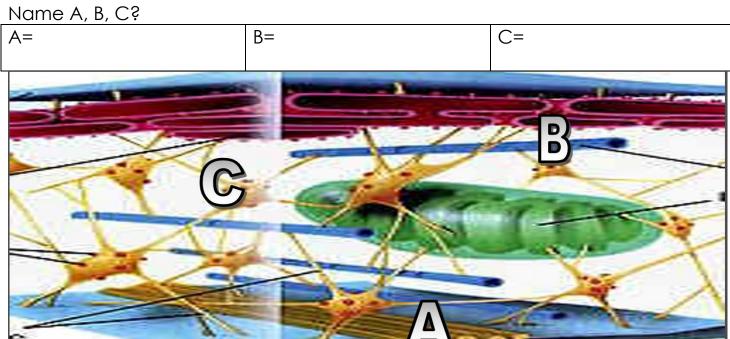
The Big / Roles / Jobs of Cellular Organelles. They...

| Examples / |
|---------------|---------------|---------------|---------------|---------------|
| Organelles or |
| process where |
| this happens. | this happens | this happens | this happens | this happens |

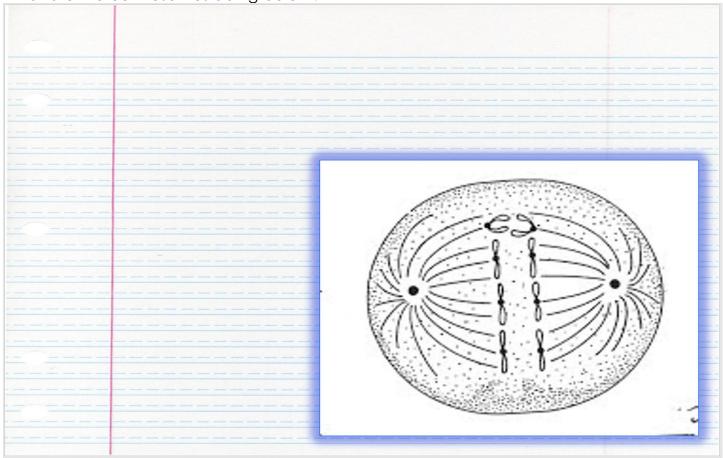

ı	VS	\cap	\cap	m	0	ς

-Has	acids /	in a sac
1103	acias /	 111 4 346


- -Digestive organelle, ______ old cell parts.
 -Breaks down _____, lipids, and carbohydrates, and bacteria.
- _____ undigested material to cell membrane for removal.
- -Cell breaks down if lysosome
- -If cell id damaged the lysosome can help it to selfin a process called apoptosis.

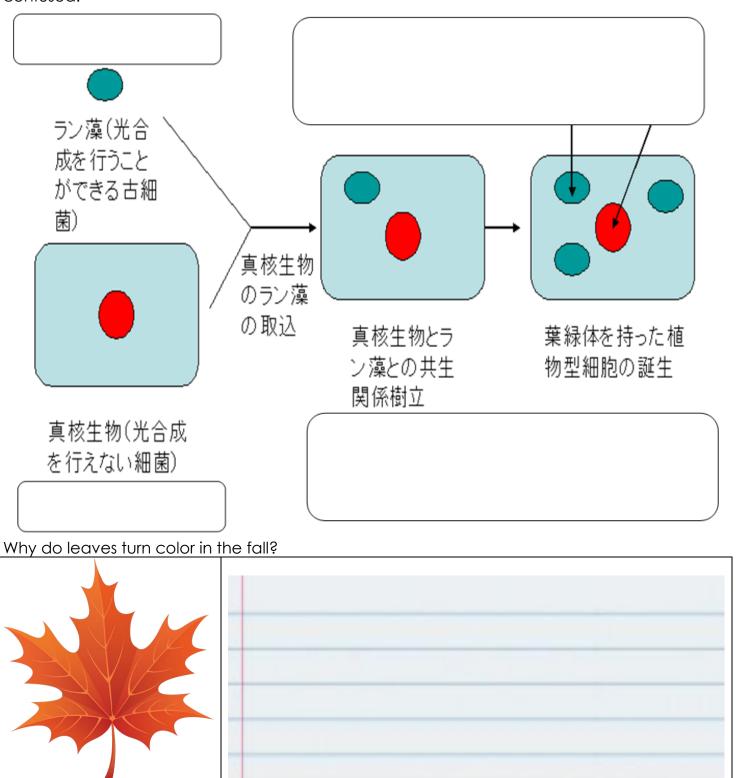

Peroxisomes: a small organelle present in the cytoplasm of many cells, which contains the reducing _____catalase and usually some oxidases.

Describe the roles of the Lysosome using the picture below to assist you.


Cytoske	eleton, microt	tubules, microfilaments	
		cell and provides shape	
	-Aids in	of materials in and	out of cells
	-Aids in		
	•	d of Microfilaments (thin fibees (Large hollow cylinders)	rs), Intermediate filaments (medium sized)
Flagellu	·	bundle of nine pairs of microt	ly as an organelle of locomotion. Ubules surrounding two central pairs of
Cilium (Cilia): A small	I structure that extends out fro	m the surface of cell and is used for
	·		
What is	this importan	nt organelle? What does it do?	Name that filament.

Centrioles / Centrosomes

What are the centrosomes doing below?



Part 4 Lesson 2 Endosymbiotic Theory

The Endosymbiotic Theory: Mitochondria and chloroplasts were once primitive bacterial cells.

-A large eukaryotic cell ingested bacteria and the two became dependent on one another for survival, resulting in a permanent relationship.

Please translate the Mandrian Chinese below. Think Endosymbiotic Theory if you're confused.

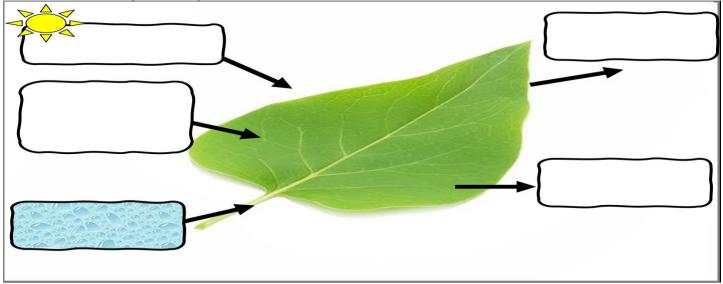
Part 4 Lesson 3 Chloroplast

Plastids (AKA Chloroplast)

- -Organelle in _____
- -Contain the green pigment _____
- -Has stacks called _____
- -Do _____ (Make the sugar)
- -Has its own unique _____.

Photosynthesis – Plants make sugar from ______. Light energy is turned into _____ energy (sugars – carbon based).

Which of the following statements is false of photosynthesis? and the answer is...


- A.) Photosynthesis requires sunlight, carbon dioxide, and water.
- B.) Oxygen and glucose are produced in photosynthesis.
- C.) Carbon Dioxide and water are produced.
- D.) In photosynthesis, plants use radiant energy from the sun to create chemical energy in the form of sugars.
- E.) None of the above.

Which of the following equations is true of photosynthesis?

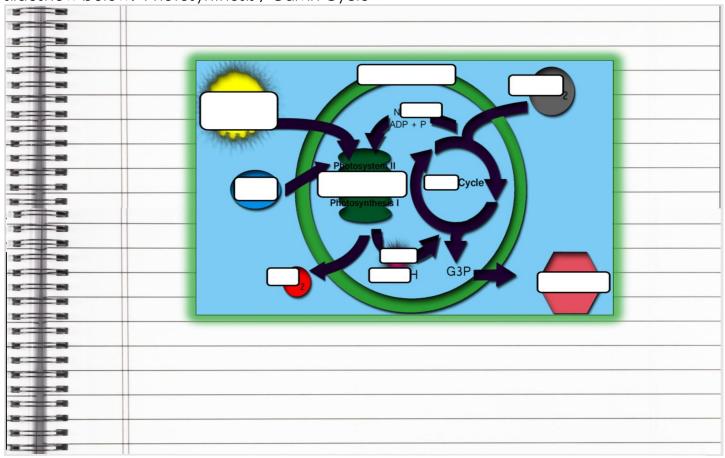
 $6O_2 + C_6H_12O_6$ Energy → $6CO_2 + 6H_2O$ $C_6H_{12}O_6 + 6O_2$ → Energy + Chloroplasts. $6O_2 + 6CO_2 + 6O_2$ → Energy + $C_6H_{12}O_6$ $6CO_2 + 6H_2O$ + Energy → $C_6H_{12}O_6 + 6O_2$ $6O_2 + 6CO_2 +$ → Energy + $C_6H_{12}O_6 + 6O_2$ Energy + $6H_2O$ → Energy + $6O_2 + 6CO_2$ $CO_2 + 3H_2O$ + Energy → $C_6H_{12}O_6 + O_2$ $6CO_2 + 6H_2O$ → Energy + $6CO_2 + 6O_2$ Energy → $6O_2 + C_6H_{12}O_6 + 6CO_2$

Part 4 Lesson 4 Photosynthesis

 $6CO_2 + 6H_2O + light energy = C_6H_{12}O_6 + 6O_2$

Photosynthesis is the process by which light ene	ergy is utilized to convertand
into food to be used by plants.	
is released into the air durir	ng the process. (O2) Waste
Light or solar energy is captured by	(CHLOR-oh-phil), the green pigment in
leaves.	

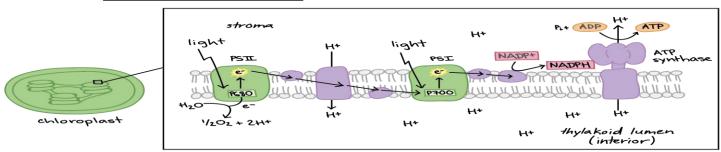
It is then converted into _____ energy which is stored as starch or sugar.


These starches and sugars are stored in roots, stems and fruits. They are available to the plant as food or fuel.

Photosynthesis

-Produces	from energy.
-Occurs only in	cells with
is	produced. Waste Product
	is used.
-Carbon	is used.

-Occurs in _____.


Record some notes and diagrams from one of the advanced photosynthesis videos from the slideshow below. Photosynthesis / Calvin Cycle

Note: The Calvin cycle reactions can be divided into three main stages: carbon fixation, reduction, and regeneration of the starting molecule.

It's complicated but there are generally four steps of the photosynthesis process.

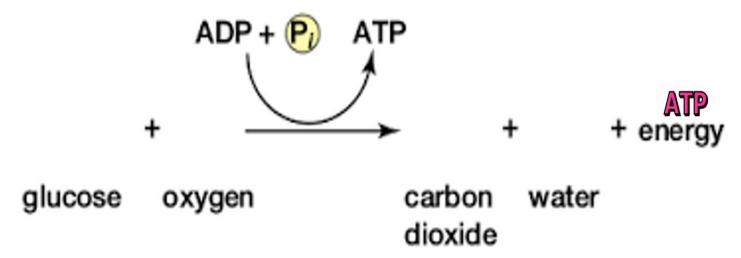
- Absorption of ______
- Transfer of _____
- Production Of ______
- Carbon

Part 4 Lesson 5 Mitochondria

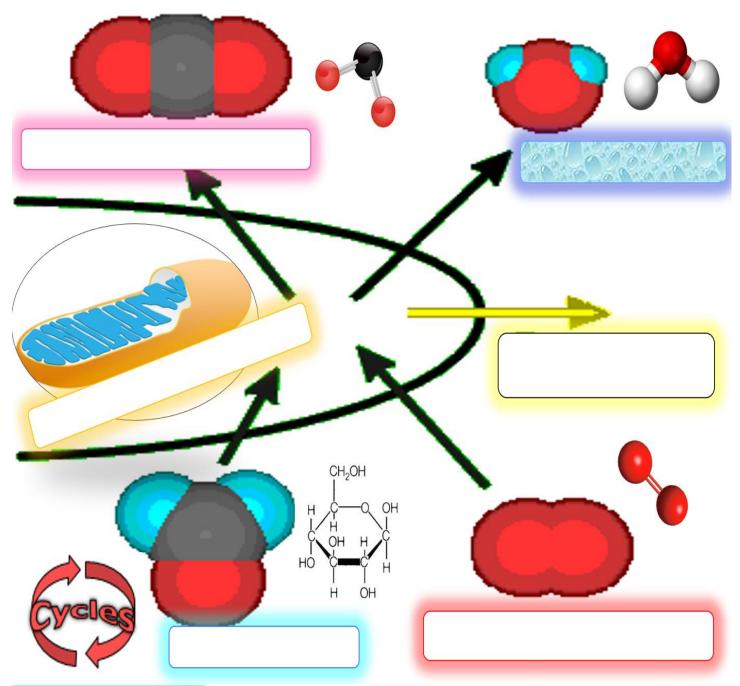
Cellular Respiration: Processes whereby certain organisms obtain _____ from organic molecules.

Side Note About Food's macronutrients undergo chemical breakdown as they move through the digestive system.

Mitochondria


- -Large organelle that makes _____ for the cell. (_____)
- -Has _____ (surface area) called cristae
- -____ membranes
- -Recycles wastes, produces _____
- -Has its own _____. Reproduce independently from cell.

Which of the following is correct for the respiration equation.

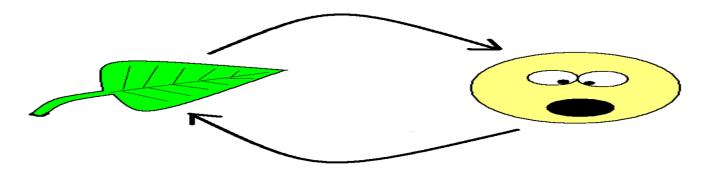

6 CO2 → 6H2O + energy → 6 CO2 → 6H2O 6 CO2 + C6H12O6 + 6O2 → 6H2O + energy C6H12O6 + 6O2 → 6 CO2 + 6H2O + energy 6 CO2 + 6H2O C6H12O6 + 6O2 → 6O2 + 6H2O C6H12O6 + 6CO2 → 6O2 + 6H2O + energy 6CO2 + 6O2 → 6H2O + energy 6 CO2 → 6H2O + energy → 6CO2 → 6H2O + C6H12O6 6CO2 + 6O2 → 6H2O + energy → More energy Which of the following is correct for the respiration equation.

6 O2 → 6H2O + energy → 6 CO2 → 6H2O 6 O2 + C6H12O6 + 6O2 → 6H2O + energy 6 CO2 + 6H2O + C6H12O6 + 6O2 → 6O2 + 6H2O C6H12O6 + 6CO2 → 6O2 + 6H2O + energy 6CO2 + 6O2 → 6H2O + energy 6 CO2 → 6H2O + energy → 6CO2 → 6H2O + C6H12O6 6CO2 + 6O2 → 6H2O + energy → More energy 6O2 + C6H12O6 → 6 CO2 + 6H2O + energy (ATP)

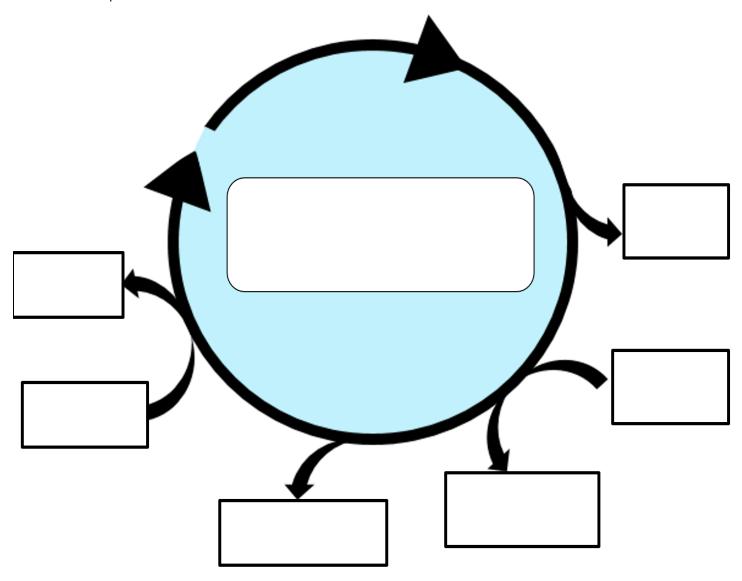
Cellular Respiration

Please fill-in the missing terms as described in the slideshow. Word Bank: Mitochondria, Energy (ADP+P to ATP), Carbon Dioxide (CO₂), Water (H₂O), Oxygen (O₂), Glucose/Sugar C₆H₁₂O₆

Part 4 Lesson 6 Respiration Continued

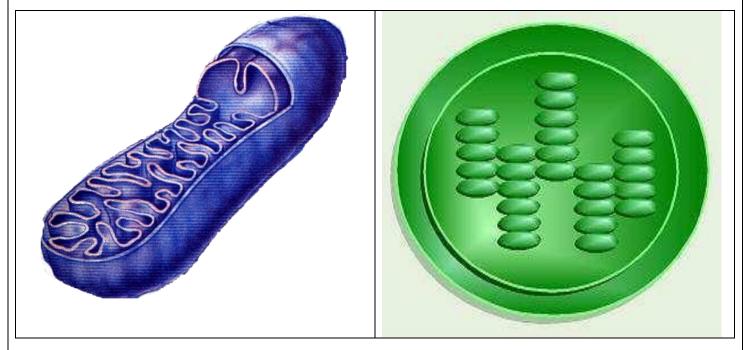

Cellular Respiration

-Burns	for energy.
-Energy is	ADP+P to ATP
-Occurs in m	ost
	is used.
	is produced.
	dioxide produced. "Waste Product"
-Occurs in	and

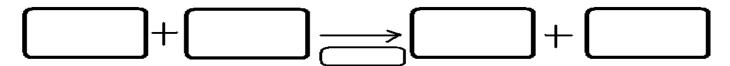

The carbon dioxide oxygen ______.

-The plant uses _____ and produces _____ during photosynthesis.

-Animals use _____ and produce _____ during cellular respiration.



The _____ acid cycle is a series of chemical reactions used by all aerobic organisms to generate energy.


Please describe the following two organelles below and answer the questions?

- 1) Name each organelle? Can you name more...
- 2) Which organelle is only in plants?
- 3) Which organelle is found more in animal cells?
- 4) How is number 1 connected to number 2 in plant cells?
- 5) Why do both 1 and 2 have folds and membranes?

1	2

Write out the equation for **photosynthesis** in the boxes below.

Which of the following is the correct equation for photosynthesis?

- 1 A) $6O_2 + 6H_2O + light energy = C_{12}H_6O_6 + 6O_2$
- 2 B) $6CO_2 + 6H_2O + sugar = C_6H_{12}O_6 + 6O_2$
- 3 C) $6CO_2 + 6O_2 + light energy = C_6H_{12}O_6 + 6H_2O$
- 4 D) $6CO_2 + 6H_2O + light energy = C_6H_{12}O_6 + 6H_2O$
- **5** E) $6CO_2 + 6H_2O + light energy = C_6H_{12}O_6 + 6O_2$

Write out the equation for **cellular respiration** in the boxes below.

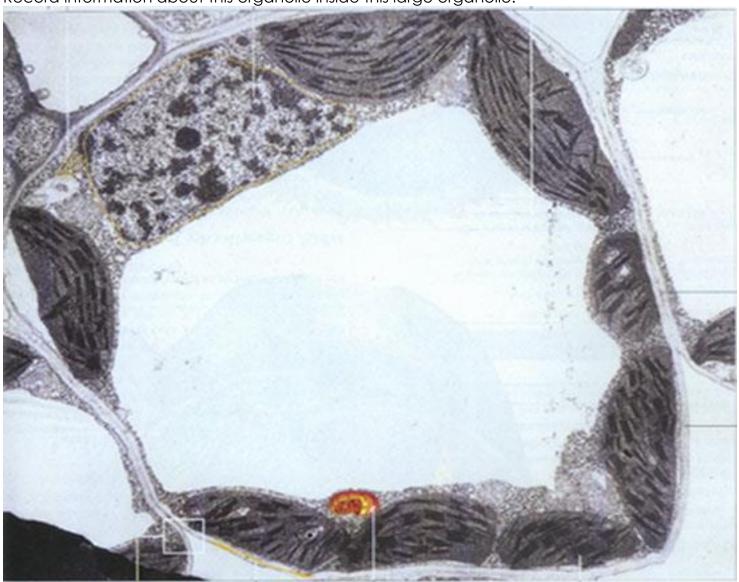
Which of the following is the correct equation for cellular respiration?

- 1 A) $C_6H_{12}O_6 + 6H_2O = Released energy + 6CO_2 + 6H_2O$.
- 2 B) $C_6H_{12}O_6 + 6O_2 = Released energy + 6CO_2 + 6H_2O$.
- 3 C) $C_6H_{12}O_6 + 6O_2 = Released energy + 6O_2 + 6H_2O$.
- 4 D) $C_{12}H_6O_6 + 6O_2 = Released energy + 6CO_2 + 6H_2O$.
- **5** E) $C_6H_{12}O_6 + 6CO_2 = Released energy + 6O_2 + 6H_2O$.

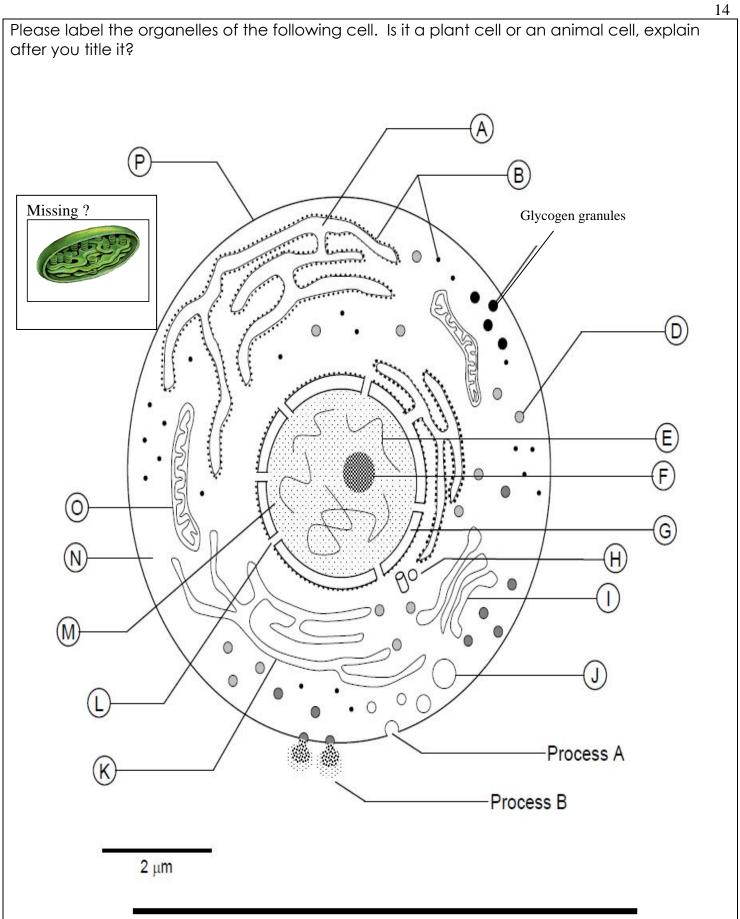
Part 4 Lesson 7 Anerobic Respiration

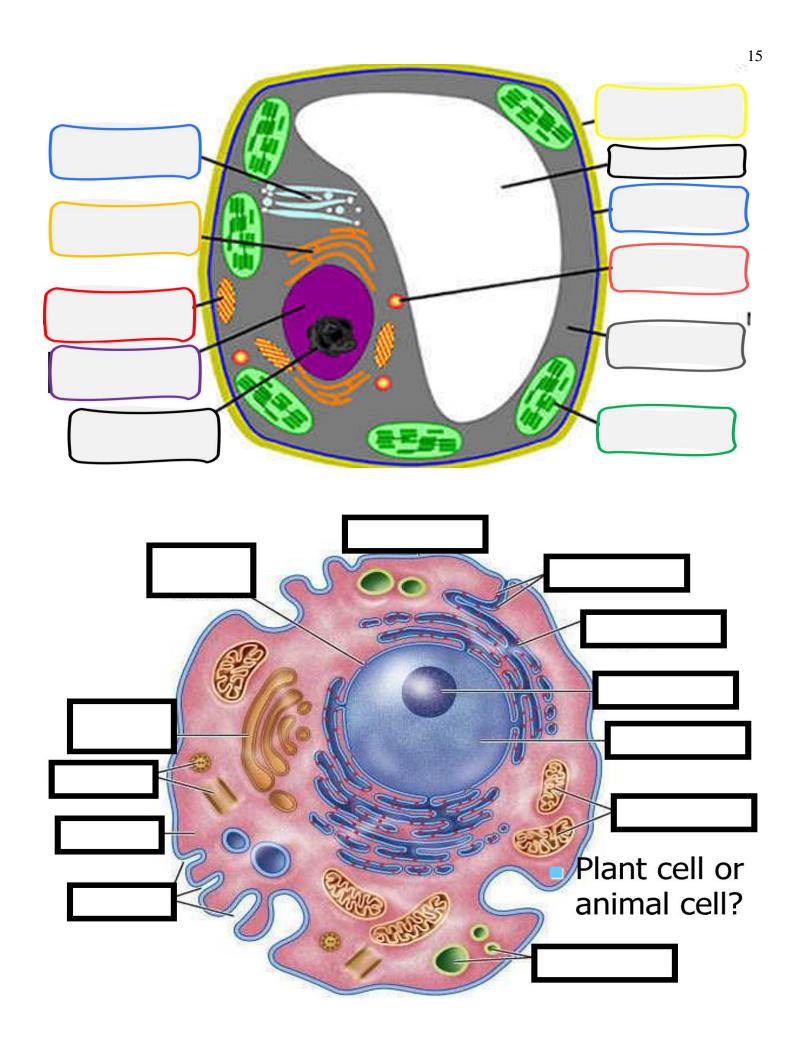
Tan Tesson 7 More De Respiration			
Aerobic Respiration: A form energy.	of cellular respiration th	nat requires	in order to generate
Anaerobic Respiration: A for scarce.	m of cellular respiration	n that occurs wher	n oxygen is or
product is ac	ion: id (muscle pain!) rathe _is a rare but serious p oy the bacterium Clost	er than carbon dio aralytic illness cau	sed by a nerve toxin
Fermentation - Thedioxide and	, , ,	conversion of	into
Fill in the missing parts for the	fermentation equatio	n.	
$C_6H_{12}O_6 \Longrightarrow 20$	C ₂ H ₅ OH +	2CO ₂	+ ATP

	12
Which is aerobic respiration and which is anae	robic respiration?
This is a form of cellular respiration that occurs	This is a form of cellular respiration that
when oxygen is absent or scarce.	requires oxygen in order to generate energy.
Microscopic organisms use such as yeast.	We use this form of respiration.
Humans carry out anaerobic respiration,	·
especially when muscles perform strenuous	
exercise resulting in oxygen debt (example -	
sprint).	


Activity! (Optional) Making Alcohol This alcohol is poisonous and will not be consumed.

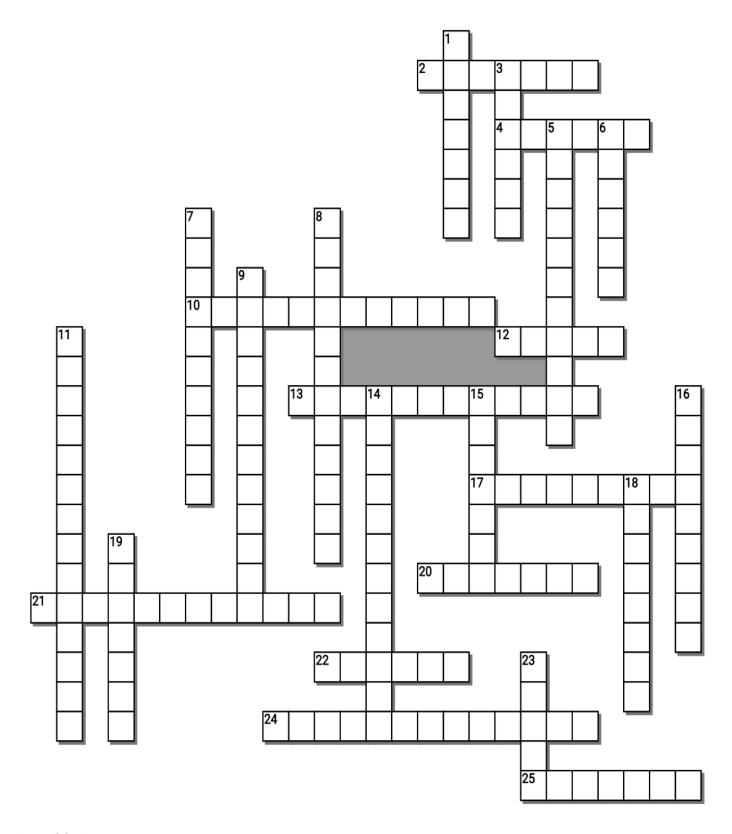
Learn more at http://www.umsl.edu/~microbes/pdf/fungus1.pdf


- A.) Add 2 tablespoons (9.85 ml) of bakers yeast to one cup (236.5 ml) of warm water.
- B.) Add 2 tablespoons of sugar into the container. Sucrose or Fructose
- C.) Pour mixture into a sports water bottle and seal tightly.
- D.) Attach tubing tightly to the end of the plastic water bottle.
- E.) Attach tube to container filled with cabbage water.
- F.) Chop the cabbage into small pieces until you have about 2 cups of chopped cabbage. Place the cabbage in a large beaker or other glass container and add boiling water to cover the cabbage. Allow at least ten minutes for the color to leach out of the cabbage. (Alternatively, you can place about 2 cups of cabbage in a blender, cover it with boiling water, and blend it.)
- G.) Filter out the plant material to obtain a red-purple-bluish colored liquid. This liquid is at about pH 7. (The exact color you get depends on the pH of the water.)
- H.) Place other end of tube into the cabbage water.


•		cabbage solution, bubbles, and	, 0	
Vhat occurred	in the cabbage	e solution? Can you te	est the pH?	
Vhat was prod	luced in the con	tainer with the yeast?	?	
_				
	es and Visual Quiz Next F	<mark>Page</mark>		
/acuole				
-Memb	orane-bound sac	cs for,	, and	removal
	in plan	t cell. Keeps good		
-Creat	e turgid	in plants		
-Conto	ains food and	solution		
		les for water removal	(in unicellular oraan	nisms) + locomotic

Record information about this organelle inside this large organelle.

rieuse illi iri me blank willi me conect organelle.	
This organelle is the powerhouse of the cell	
Packages proteins and sends them throughout the cell	_
This organelle would be the clean-up crew of a town	
Recycles waste	
This organelle stores food and waste	
Protein making factories for the cell	
Serves as cells transport system and allows ribosomes to attach	_
Composed of microtubules that support the cell	
Photosynthesis occurs here	
Composed of DNA and found in the chromatin	
Inside nucleus and makes RNA to make proteins	
Allows certain materials into and out of the nucleus	
This houses the DNA and helps to control cell functions	•
This is the fluid inside the cell that contains a chemical soup	



Cell Organelle Visual Quiz (Secretly write owl in correct space +1 pt) Bonus 1 point

Score ____/100

1)	6)	11)	16)	*21)
2)	7)	12)	17)	*22)
3)	8)	13)	18)	*23)
4)	9)	14)	19)	*24)
5)	10)	15)	20)	*25)

Possible Answers

AEROBIC, ANAEROBIC, CALVIN, CENTROSOME, CHLOROPLASTS, CITRIC, CRISTAE, CYTOSKELETON, DIOXIDE, FERMENTATION, LATIC, LYSOSOME, MICROTUBULES, MITOCHONDRIA, ORGANELLE, OXYGEN, PHOTOSYNTHESIS, PLASTID, RESPIRATION, TURGOR, VACUOLE, WATER, ENDOSYMBIOTIC, GLUCOSE, TRIPHOSPHATE

Note: 6 Down should be oxygen – It is used in respiration, CO2 is the waste. Across 2. Cellular respiration releases stored energy 1. A membrane-bound organelle found in the in _____ molecules and converts it into a cells of plants, algae, and some other form of energy that can be used by cells. eukaryotic organisms. They are considered 4. Aside from storage, the main role of the to be intracelluar endosymbiotic central vacuole is to maintain ___ Cyanobacteria. 3. The _____ acid cycle is a series of pressure against the cell wall. 10. ATP (adenosine _____) is the reactions that produces two carbon dioxide molecules, one GTP/ATP, and reduced forms energy-carrying molecule used in cells because it can release energy very quickly. of NADH and FADH2 12. During aerobic cellular respiration, Cellular _____ is a set of metabolic glucose reacts with oxygen, forming ATP reactions and processes that take place in that can be used by the cell. Carbon dioxide the cells of organisms to convert chemical and _____ are created as byproducts. energy from oxygen molecules or nutrients 13. _____ is a metabolic process that into adenosine triphosphate, and then produces chemical changes in organic release waste products substrates through the action of enzymes. In 6. Waste Product of Cellular Respiration biochemistry, it is narrowly defined as the 7. An organelle that serves as the main extraction of energy from carbohydrates in microtubule organizing center (MTOC) of the the absence of oxygen. animal cell, as well as a regulator of 17. Cellular _____: A membrane-bound cell-cycle progression compartment or structure in a cell that 8. A microscopic network of protein performs a function. filaments and tubules in the cytoplasm of 20. A space or vesicle within the cytoplasm many living cells, giving them shape and of a cell, enclosed by a membrane and coherence. typically containing fluid. 9. Are membrane-bound cell organelles that generate most of the chemical energy 21. _____ are organelles that conduct photosynthesis, where the needed to power the cell's biochemical photosynthetic pigment chlorophyll captures reactions the energy from sunlight, converts it, and Plants make sugar from sunlight. Light stores it in the energy-storage molecules ATP energy is turned into chemical energy (sugars and NADPH while freeing oxygen from water carbon based). in plant and algal cells 14. _____ are polymers of tubulin that form part of the cytoskeleton and 22. The _____ cycle is a process that plants and algae use to turn carbon dioxide provide structure and shape to eukaryotic from the air into sugar, the food autotrophs cells. need to grow. This is a form of cellular respiration that 24. The _____ theory states that requires oxygen in order to generate energy. some of the organelles in today's eukaryotic 16. _____ respiration. This is a form cells were once prokaryotic microbes of cellular respiration that occurs when 25. each of the partial partitions in a oxygen is absent or scarce. mitochondrion formed by infolding of the 18. n organelle in the cytoplasm of inner membrane. eukaryotic cells containing degradative enzymes enclosed in a membrane. 19. Waste Product of Photosynthesis. Carbon____ 23. _____ acid, or lactate, is a chemical

byproduct of anaerobic respiration

Part 4 Review Game

Name:

1-10 = 10 pts

* = Bonus + 1 pt, Part 4 Lesson 10

(Secretly write owl in correct space +1 pt)

Score ____ / 100

Final Question = 5 pt wager				
IT BURNS	PHOTOSHOP	BREATH IN	BIG GULP	GREEN SUPER HEROES Bonus round 1 pt each
1)	6)	11)	16)	*21)
2)	7)	12)	17)	*22)
3)	8)	13)	18)	*23)
4)	9)	14)	19)	*24)
5)	10)	15)	20)	*25)

Final Question Wager	/5 Answer:	
•		

Part 4 Organelles

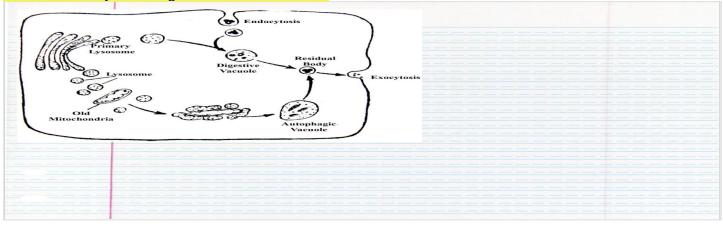
Name:

Part 4 Lesson 1 Lysosomes

Cellular Organelles: A membrane-bound compartment or structure in a cell that performs a function.

The Big / Roles / Jobs of Cellular Organelles. They...

Support	<mark>Make</mark> <mark>Manufacture</mark>	<mark>Breakdown</mark> <mark>Materials</mark>	Transport Materials	Communicate
Examples / Organelles or process where this happens. Cell Wall Cytoskeleton	Examples / Organelles or process where this happens Ribosomes Chloroplast Golgi-Vesicles	Examples / Organelles or process where this happens Lysosome Peroxisome	Examples / Organelles or process where this happens Endoplasmic Reticulum Golgi Apparatus Cell Membrane	Examples / Organelles or process where this happens Nucleus Ribosomes Endoplasmic Reticulum Lysosome


Lysosomes

- -Has digestive acids / enzymes in a sac
- -Digestive organelle, recycles old cell parts.
- -Breaks down proteins, lipids, and carbohydrates, and bacteria.
- -Transports undigested material to cell membrane for removal.
- -Cell breaks down if lysosome breaks open
- -If cell id damaged the lysosome can help it to self-destruct in a process called apoptosis.

Peroxisomes: a small organelle present in the cytoplasm of many cells, which contains the reducing enzyme catalase and usually some oxidases.

Describe the roles of the Lysosome using the picture below to assist you.

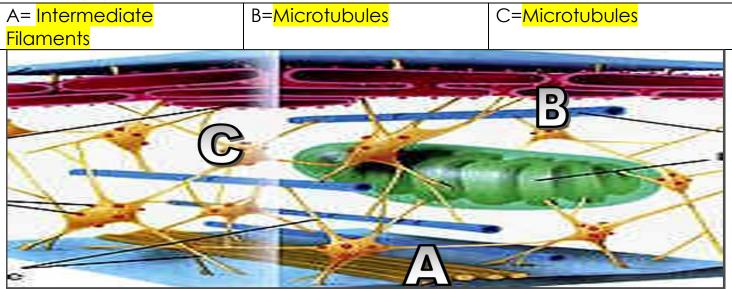
A lysosome is a membrane-bound cell organelle that contains digestive enzymes. Lysosomes are involved with various cell processes. They break down excess or worn-out cell parts. They may be used to destroy invading viruses and bacteria.

Cytoskeleton, microtubules, microfilaments

- -Supports cell and provides shape
- -Aids in movement of materials in and out of cells
- -Aids in locomotion
- -Composed of microtubule, Microfilaments (thin fibers), Intermediate filaments (medium sized), Microtubules (Large hollow cylinders)

Flagellum: A hair-like structure that acts primarily as an organelle of locomotion.

Made of a bundle of nine pairs of microtubules surrounding two central pairs of microtubules


Cilium (Cilia): A small structure that extends out from the surface of cell and is used for locomotion.

What is this important organelle? What does it do? Name that filament.

The cytoskeleton is a structure that helps cells maintain their shape and internal organization, and it also provides mechanical support that enables cells to carry out essential functions like division and movement.

Name A, B, C?

Centrioles / Centrosomes

- -Look like golden nuggets (paired)
- -Made of nine tubes
- -Aid in cell division (Mitosis)

What are the centrosomes doing below?

The centrosome is an important part of how the cell organizes the cell division. Centrioles are cylindrical cell structures that are composed of groupings of microtubules, which are tubeshaped molecules or strands of protein. Without centrioles, chromosomes would not be able to move during the formation of new cells. Centrioles help to organize the assembly of microtubules during cell division. To put it simply, chromosomes use the centriole's microtubules as a highway during the cell division process.

Part 4 Lesson 2 Endosymbiotic Theory

The Endosymbiotic Theory: Mitochondria and chloroplasts were once primitive bacterial cells.

-A large eukaryotic cell ingested bacteria and the two became dependent on one another for survival, resulting in a permanent relationship.

Please translate the Mandrian Chinese below. Think Endosymbiotic Theory if you're confused.

The endosymbiotic theory states that some of the organelles in eukaryotic cells were once prokaryotic microbes. Mitochondria and chloroplasts are the same size as prokaryotic cells and divide by binary fission. Mitochondria and chloroplasts have their own DNA which is circular, not linear.

Why do leaves turn color in the fall?

Leaves are colored by molecules called pigments. The pigment that causes leaves to be green is chlorophyll. Chlorophyll is important for plants to make food using sunlight. During summer when there is plenty of sunlight, plants make a lot of chlorophyll.

In the fall plants stop making chlorophyll. Instead, those plants break down chlorophyll into smaller molecules. As chlorophyll goes away, other pigments start to show their colors. This is why leaves turn yellow or red in fall.

Part 4 Lesson 2 Endosymbiotic Theory Part 4 Lesson 3 Chloroplast

Plastids (AKA Chloroplast)

- -Organelle in plants
- -Contain the green pigment chlorophyll
- -Has stacks called granum
- -Does photosynthesis (Make the sugar)
- -Has its own unique DNA.

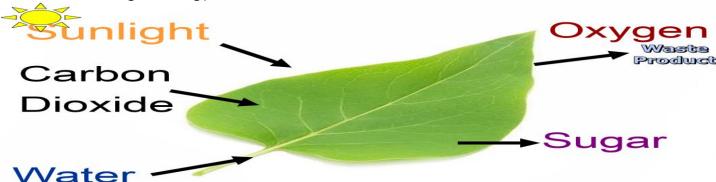
Photosynthesis – Plants make sugar from light. Light energy is turned into chemical energy (sugars - carbon based).

Which of the following statements is false of photosynthesis? and the answer is...

- A.) Photosynthesis requires sunlight, carbon dioxide, and water.
- B.) Oxygen and glucose are produced in photosynthesis.
- C.) Carbon Dioxide and water are produced.
- D.) In photosynthesis, plants use radiant energy from the sun to create chemical energy in the form of sugars.
- E.) None of the above.

Which of the following equations is true of photosynthesis?

6O₂ + C₆H₁2O₆ Energy → 6CO₂ + 6H₂O $C_6H_{12}O_6 + 6O_2 \rightarrow Energy + Chloroplasts.$ $6O_2 + 6CO_2 + 6O_2 \rightarrow Energy + C_6H_{12}O_6$


 $6CO_2 + 6H_2O + Energy \rightarrow C_6H_{12}O_6 + 6O_2$

 $6O_2 + 6CO_2 + \rightarrow Energy + C_6H_{12}O_6 + 6O_2$ Energy + $6H_2O \rightarrow$ Energy + $6O_2 + 6CO_2$ $CO_2 + 3H_2O + Energy \rightarrow C_6H_{12}O_6 + O_2$ $6CO_2 + 6H_2O \rightarrow Energy + 6CO_2 + 6O_2$

Energy \rightarrow 6O₂ + C₆H₁₂O₆ + 6CO₂

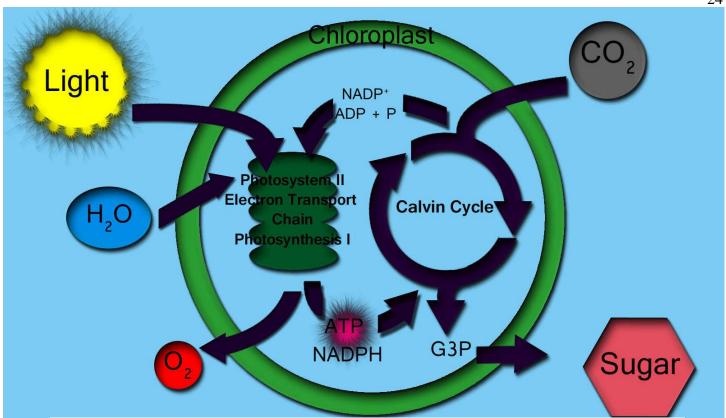
Part 4 Lesson 4 Photosynthesis

 $6CO_2 + 6H_2O + light energy = C_6H_{12}O_6 + 6O_2$

Photosynthesis is the process by which light energy is utilized to convert water and carbon dioxide into food to be used by plants.

Oxygen is released into the air during the process. (O2) Waste

Light or solar energy is captured by chlorophyll (CHLOR-oh-phil), the green pigment in leaves.

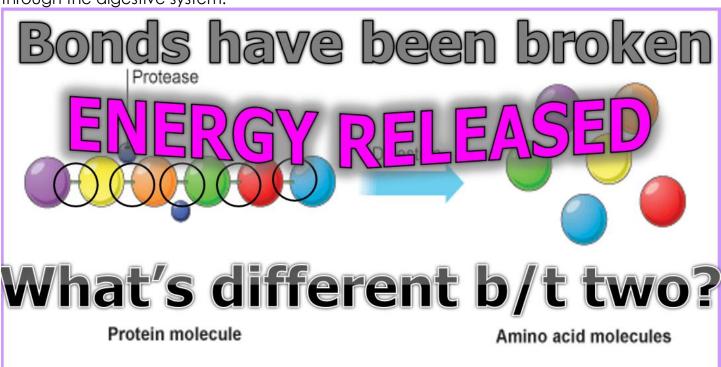

It is then converted into chemical energy which is stored as starch or sugar.

These starches and sugars are stored in roots, stems and fruits. They are available to the plant as food or fuel.

Photosynthesis

- -Produces sugar from energy.
- -Occurs only in cells with chloroplasts
- -Oxygen is produced. Waste Product
- -Water is used.
- -Carbon dioxide is used.
- -Occurs in light.

Record some notes and diagrams from one of the advanced photosynthesis videos from the slideshow below. Photosynthesis / Calvin Cycle



Note: The Calvin cycle reactions can be divided into three main stages: carbon fixation, reduction, and regeneration of the starting molecule.

Part 4 Lesson 5 Mitochondria

Cellular Respiration: Processes whereby certain organisms obtain energy from organic molecules.

Side Note About Food: Food's macronutrients undergo chemical breakdown as they move through the digestive system.

Mitochondria

- -Large organelle that makes energy for the cell. (respiration)
- -Has folds (surface area) called cristae
- -Two membranes
- -Recycles wastes, produces urea
- -Has its own DNA. Reproduce independently from cell.

Which of the following is correct for the respiration equation.

6 CO2 → 6H2O + energy → 6 CO2 → 6H2O

6 CO2 + C6H12O6 + 6O2 → 6H2O + energy

 $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + energy$

6 CO2 + 6H2O C6H12O6 + 6O2 → 6O2 + 6H2O

 $C6H12O6 + 6CO2 \rightarrow 6O2 + 6H2O + energy$

 $6CO_2 + 6O_2 \rightarrow 6H_2O + energy$

6 CO2 → 6H2O + energy → 6CO2 → 6H2O + C6H12O6

 $6CO_2 + 6O_2 \rightarrow 6H_2O + energy \rightarrow More energy$

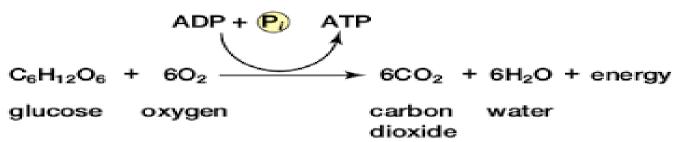
Which of the following is correct for the respiration equation.

6 O2 → 6H2O + energy → 6 CO2 → 6H2O

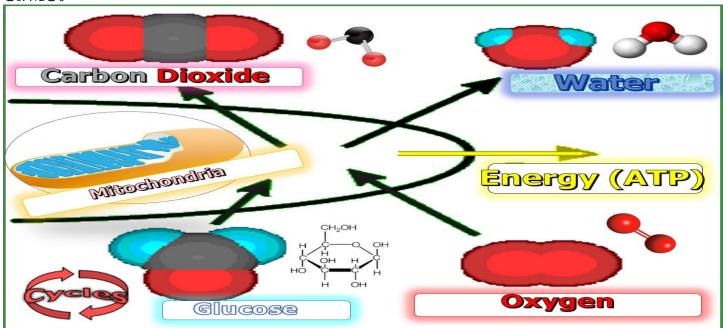
6 O2 + C6H12O6 + 6O2 → 6H2O + energy

6 CO₂ + 6H₂O + C6H₁2O₆ + 6O₂ → 6O₂ + 6H₂O

C6H12O6 + 6CO2 → 6O2 + 6H2O + energy


6CO2 + 6O2 → 6H2O + energy

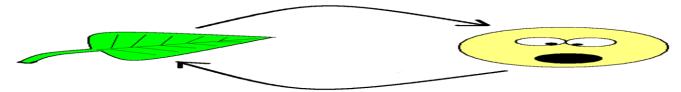
6 CO2 → 6H2O + energy → 6CO2 → 6H2O + C6H12O6


 $6CO_2 + 6O_2 \rightarrow 6H_2O + energy \rightarrow More energy$

 $6O2 + C6H12O6 \rightarrow 6CO2 + 6H2O + energy (ATP)$

Cellular Respiration

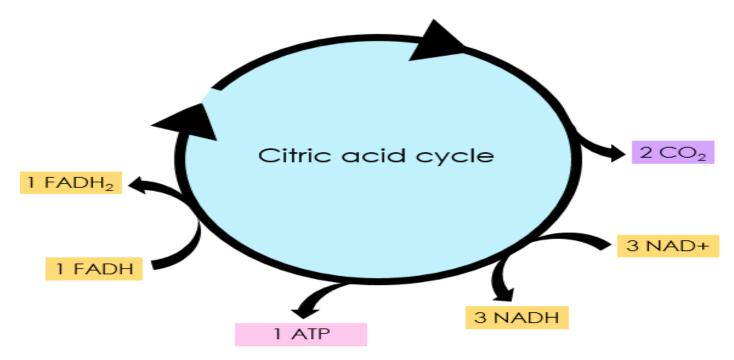
Please fill-in the missing terms as described in the slideshow. Word Bank: Mitochondria, Energy (ADP+P to ATP), Carbon Dioxide (CO₂), Water (H₂O), Oxygen (O₂), Glucose/Sugar C₆H₁₂O₆


Part 4 Lesson 6 Respiration Continued

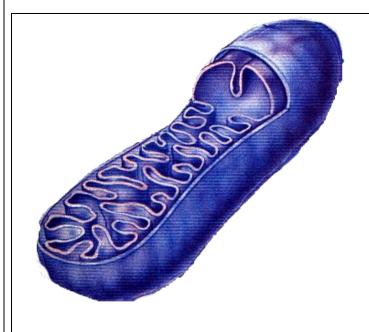
Cellular Respiration

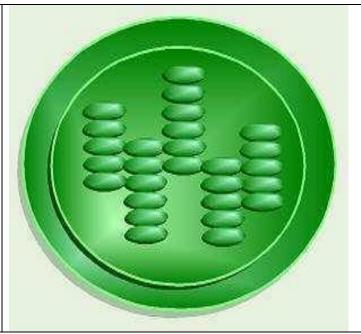
- -Burns sugar for energy.
- -Energy is created. ADP+P to ATP
- -Occurs in most cells.
- -oxygen is used.
- -water is produced.
- -carbon dioxide produced. "Waste Product"
- -Occurs in light and dark.

The carbon dioxide oxygen balance.


- -The plant uses carbon dioxide and produces oxygen during photosynthesis.
- -Animals use oxygen and produce carbon dioxide during cellular respiration.

The balance of oxygen and carbon dioxide is maintained in the atmosphere by the oxygen released by the plant during photosynthesis and carbon dioxide released by human, animals etc. in the atmosphere. The balance of oxygen and carbon dioxide is made due to respiration and photosynthesis.


The citric acid cycle is a series of chemical reactions used by all aerobic organisms to generate energy.


Requires the oxidation of acetate derived from carbohydrates, fats, and proteins—into carbon dioxide.

Please describe the following two organelles below and answer the questions

- 1) Name each organelle? Can you name more...
- 2) Which organelle is only in plants?
- 3) Which organelle is found more in animal cells?
- 4) How is number 1 connected to number 2 in plant cells?
- 5) Why do both 1 and 2 have folds and membranes?

Mitochondria

Large organelle that makes energy for the cell. (ATP)

Has folds (surface area) called cristae

Two membranes

Recycles wastes, produces urea

Has its own DNA. Reproduce independently from cell.

 $6O_2 + C_6H_{12}O_6 \rightarrow 6CO_2 + 6H_2O + energy (ATP)$

Plastids (AKA Chloroplast)

Organelle in plants

Contain the green pigment chlorophyll

Has stacks called Thylakoids

Do photosynthesis (Make the sugar)

Has it's own unique DNA.

 $6CO_2 + 6H_2O + Energy \rightarrow C_6H_{12}O_6 + 6O_2$

Write out the equation for **photosynthesis** in the boxes below.

Which of the following is the correct equation for photosynthesis?

- 5 A) $6O_2 + 6H_2O + light energy = C_{12}H_6O_6 + 6O_2$
- 6 B) $6CO_2 + 6H_2O + sugar = C_6H_{12}O_6 + 6O_2$
- 7 C) $6CO_2 + 6O_2 + light energy = C_6H_{12}O_6 + 6H_2O$
- 8 D) $6CO_2 + 6H_2O + light energy = C_6H_{12}O_6 + 6H_2O$
- **6** E) $6CO_2 + 6H_2O + light energy = C_6H_{12}O_6 + 6O_2$

Write out the equation for **cellular respiration** in the boxes below.

Which of the following is the correct equation for cellular respiration?

- 6 A) $C_6H_{12}O_6 + 6H_2O = Released energy + 6CO_2 + 6H_2O$.
- 7 B) $C_6H_{12}O_6 + 6O_2 = Released energy + 6CO_2 + 6H_2O$.
- 8 C) $C_6H_{12}O_6 + 6O_2 = Released energy + 6O_2 + 6H_2O$.
- 9 D) $C_{12}H_6O_6 + 6O_2 = Released energy + 6CO_2 + 6H_2O_1$
- 10 E) $C_6H_{12}O_6 + 6CO_2 = Released energy + 6O_2 + 6H_2O$.

Part 4 Lesson 7 Anerobic Respiration

Aerobic Respiration: A form of cellular respiration that requires oxygen in order to generate energy.

Anaerobic Respiration: A form of cellular respiration that occurs when oxygen is absent or scarce.

-In anaerobic respiration: glucose isn't completely broken down. The waste product is lactic acid (muscle pain!) rather than carbon dioxide and water.

-Botulism is a rare but serious paralytic illness caused by a nerve toxin that is produced by the bacterium Clostridium botulinum. Never feed babies...

Fermentation - The anaerobic (no oxygen) conversion of sugar into carbon dioxide and alcohol by yeast.

Fill in the missing parts for the fermentation equation.

Which is aerobic respiration and which is anaerobic respiration?

Which is detable respiration and which is ande	Which is detable respiration and which is anderable respiration?				
Anaerobic Respiration	Aerobic Respiration				
This is a form of cellular respiration that occurs	This is a form of cellular respiration that				
when oxygen is absent or scarce.	requires oxygen in order to generate energy.				
Microscopic organisms use such as yeast.	We use this form of respiration.				
Humans carry out anaerobic respiration,					
especially when muscles perform strenuous					
exercise resulting in oxygen debt (example -					
sprint).					

Activity! (Optional) Making Alcohol This alcohol is poisonous and will not be consumed.

Learn more at http://www.umsl.edu/~microbes/pdf/fungus1.pdf

- A.) Add 2 tablespoons (9.85 ml) of bakers yeast to one cup (236.5 ml) of warm water.
- B.) Add 2 tablespoons of sugar into the container. Sucrose or Fructose
- C.) Pour mixture into a sports water bottle and seal tightly.
- D.) Attach tubing tightly to the end of the plastic water bottle.
- E.) Attach tube to container filled with cabbage water.
- F.) Chop the cabbage into small pieces until you have about 2 cups of chopped cabbage. Place the cabbage in a large beaker or other glass container and add boiling water to cover the cabbage. Allow at least ten minutes for the color to leach out of the cabbage. (Alternatively, you can place about 2 cups of cabbage in a blender, cover it with boiling water, and blend it.)
- G.) Filter out the plant material to obtain a red-purple-bluish colored liquid. This liquid is at about pH 7. (The exact color you get depends on the pH of the water.)
- H.) Place other end of tube into the cabbage water.
- I.) Make Observations about the colors of the cabbage solution, bubbles, and anything else.

What occurred in the cabbage solution? Can you test the pH?

The cabbage solution should change colors. The carbon dioxide gas coming through the tube changed the pH of the water.

(made more acidic)

What was produced in the container with the yeast?

The yeast used the sugar and through fermentation created alcohol and carbon dioxide gas. The CO₂ gas traveled through the tube into the cabbage solution as noted by the bubbles and pH change.

Part 4 Lesson 8 Vacuoles and Visual Quiz Next Page

Vacuole

- -Membrane-bound sacs for storage, digestion, and waste removal
- -Large/Central in plant cell. Keeps good SA:V ratio
- -Create turgor pressure in plants
- -Contains food and waste solution
- -Contractile vacuoles for water removal (in unicellular organisms) + locomotion.

Plant vacuoles are large compartments that occupy a significant volume (up to 90%) of plant cells. Under normal growth conditions water can flow into the vacuole, building up the turgor pressure that drives cell wall expansion Roles...

Isolating materials that might be harmful or a threat to the cell.

Containing waste products.

Containing water in plant cells.

Maintaining internal hydrostatic pressure or turgor within the cell.

Maintaining an acidic internal pH.

Containing small molecules.

Record information about this organelle inside this large organelle.

Please fill in the blank with the correct organelle.

This organelle is the powerhouse of the cell Mitochondria

Packages proteins and sends them throughout the cell Golgi Apparatus

This organelle would be the clean-up crew of a town Lysosome

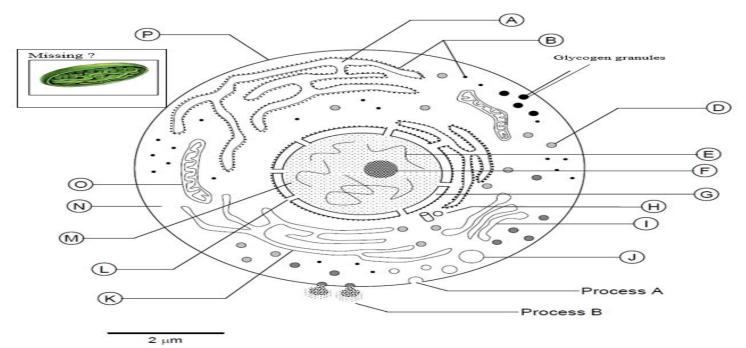
Recycles waste Lysosome

This organelle stores food and waste vacuole Protein making factories for the cell Ribosome

Serves as cells transport system and allows ribosomes to attach Rough Endoplasmic Reticulum

Composed of microtubules that support the cell Cytoskeleton

Photosynthesis occurs here Chloroplasts


Composed of DNA and found in the nucleus Chromosoms/Chromatin

Inside nucleus and makes RNA to make proteins Nucleolus

Allows certain materials into and out of the nucleus Plasma / Cell Membrane

This the control center of the cell nucleus

This is the fluid inside the cell that contains a chemical soup cytoplasm

A= Endoplasmic reticulum

B= Ribosomes

C= Glycogen Granules

D= Vacuole

E=Chromatin

F=Nucleolus

G=Nuclear Membrane

H=Centriole

I=Golgi Apparatus

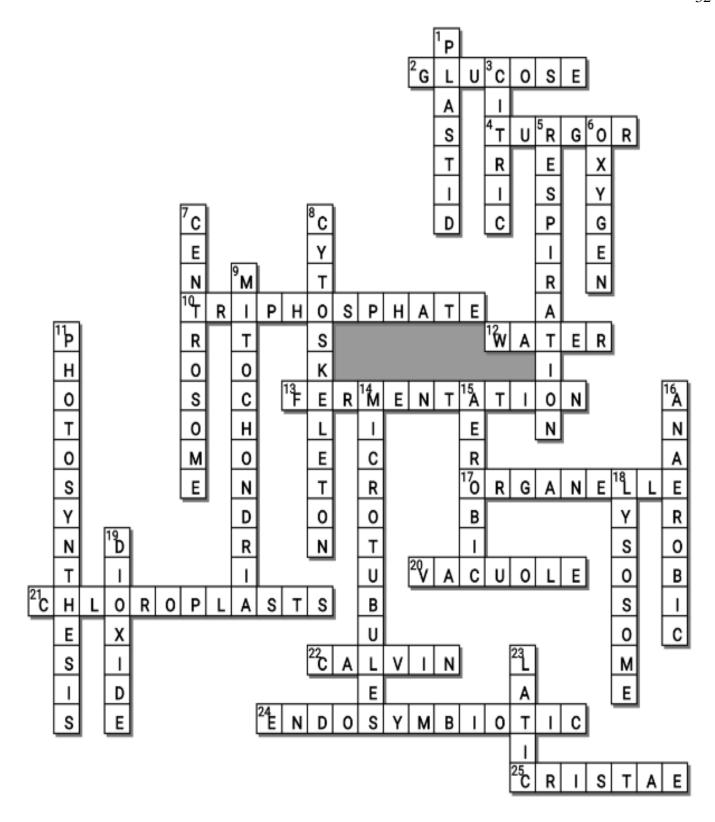
<mark>J=Lysosome</mark>

K=Smooth ER

L=Nuclear Pore

M=Nucleus

N=Cytoplasm


O=Mitochondria

Missing=Chloroplast

Cell Organelle Visual Quiz (Secretly write owl in correct space +1 pt) Bonus 1 point

Score ____/100

1) Mitochondria	2) Smooth Endoplasmic Reticulum	3) Vacuole	4) Ribosomes	5) Chromosomes
6) Golgi Bodies	7) Cell Wall	8) Cytoplasm	9) Centrioles	10) Cytoskeleton
11) Nucleous	12) Nucleous	13) R.E.R Rough Endoplasmic Reticulum	14) Cell Wall	15) Plasma Membrane
16) Nuclear Membrane	17) Lysosomes	18) Plastids Chloroplasts	19) Rough Endo plasmic - reticulum	20) Cytoplasm
*21) DNA Deoxyribo Nucleic Acid	*22) Sid the Science Kid	*23) Emily Elizabeth	Total:	

Possible Answers

AEROBIC, ANAEROBIC, CALVIN, CENTROSOME, CHLOROPLASTS, CITRIC, CRISTAE, CYTOSKELETON, DIOXIDE, FERMENTATION, LATIC, LYSOSOME, MICROTUBULES, MITOCHONDRIA, ORGANELLE, OXYGEN, PHOTOSYNTHESIS, PLASTID, RESPIRATION, TURGOR, VACUOLE, WATER, ENDOSYMBIOTIC, GLUCOSE, TRIPHOSPHATE

Across

Cellular respiration releases stored energy
in molecules and converts it into a
form of energy that can be used by cells.
4. Aside from storage, the main role of the
central vacuole is to maintain
pressure against the cell wall.
10. ATP (adenosine) is the
energy-carrying molecule used in cells
because it can release energy very quickly.
12. During aerobic cellular respiration,
glucose reacts with oxygen, forming ATP
that can be used by the cell. Carbon dioxide
and are created as byproducts.
13 is a metabolic process that
produces chemical changes in organic
substrates through the action of enzymes. Ir
biochemistry, it is narrowly defined as the
extraction of energy from carbohydrates in
the absence of oxygen.
17. Cellular: A membrane-bound
compartment or structure in a cell that
performs a function.
20. A space or vesicle within the cytoplasm
of a cell, enclosed by a membrane and
typically containing fluid.
21 are organelles that
conduct photosynthesis, where the
photosynthetic pigment chlorophyll captures
the energy from sunlight, converts it, and
stores it in the energy-storage molecules ATI
and NADPH while freeing oxygen from water
in plant and algal cells
22. The cycle is a process that
plants and algae use to turn carbon dioxide
from the air into sugar, the food autotrophs
need to grow.
24. The theory states that
some of the organelles in today's eukaryotic
cells were once prokaryotic microbes
25. each of the partial partitions in a
mitochondrion formed by infolding of the
inner membrane.

Down

- 1. A membrane-bound organelle found in the cells of plants, algae, and some other eukaryotic organisms. They are considered to be intracelluar endosymbiotic Cyanobacteria.

 3. The _____ acid cycle is a series of
- 3. The _____ acid cycle is a series of reactions that produces two carbon dioxide molecules, one GTP/ATP, and reduced forms of NADH and FADH2
- 5. Cellular _____ is a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from oxygen molecules or nutrients into adenosine triphosphate, and then release waste products
- 6. Waste Product of Cellular Respiration
- 7. An organelle that serves as the main microtubule organizing center (MTOC) of the animal cell, as well as a regulator of cell-cycle progression
- 8. A microscopic network of protein filaments and tubules in the cytoplasm of many living cells, giving them shape and coherence.
- 9. Are membrane-bound cell organelles that generate most of the chemical energy needed to power the cell's biochemical reactions
- 11. Plants make sugar from sunlight. Light energy is turned into chemical energy (sugars carbon based).
- 14. _____ are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells.
- 15. This is a form of cellular respiration that requires oxygen in order to generate energy.

 16. _____ respiration. This is a form of cellular respiration that occurs when oxygen is absent or scarce.
- 18. n organelle in the cytoplasm of eukaryotic cells containing degradative enzymes enclosed in a membrane.
- 19. Waste Product of Photosynthesis. Carbon_____
- 23. _____ acid, or lactate, is a chemical byproduct of anaerobic respiration

Part 4 Review Game

Name:

1-10 = 10 pts

* = Bonus + 1 pt, Part 4 Lesson 10

(Secretly write owl in correct space +1 pt)

Score ____ / 100

Final Question = 5 pt wager

IT BURNS	PHOTOSHOP	BREATH IN	BIG GULP	GREEN SUPER HEROES Bonus round 1 pt each
1) LYSOSOMES	6) FLAGELLUM	PHOTO SYNTHESIS	16) LETTER B	*21) GREEN ARROW
2) LETTER C	7) CILIA	12) LETTER D	CITRIC ACID CYCLE	*22) Dr. DOOM
PEROXISOME	8) CENTROSOMES /CENTRIOLES	13) LETTER C	18) LETTER F	*23) BEAST BOY
4) CYTOSKELETON	9) CHLOROPLAST /PLASTID	CELLULAR RESPIRATION OWI+1pt	19) VACUOLE	*24) AQUAMAN
5) A=INTERMEDIATE FILAMENTS B=MICROTUBULES C=Microfilaments	THYLAKOIDS	15) MITO CHONDRIA	ANAEROBIC RESPIRATION	*25) TEENAGE MUTANT NINJA TURTLES

Final Question Wager ______/5_ Answer: ENDOSYMBIOTIC THEORY