Part 5 Chemical RXN's

Alkali Metal

Alkaline Earth

Transition Metal

Basic Metal

Metalloid

Nonmetal

Halogen

Noble Gas

Lanthanide

Actinide

Name:

Part 5 Lesson 1 Types of Chemical Reactions

Chemical Change: The change of substances into other substances through a ______ of the ______.

The 6 Types of Chemical Reactions

Combustion: When ______ combines with another compound to form ______ and carbon dioxide.

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$

Describe what goes in and out of combustion below. Word bank: Fuel, Oxygen, Heat, Exhaust, Heat, Matter In = Matter Out and Energy In = Energy Out

Synthesis Reaction: When _____ or more ______ compounds combine to form a more ______ one. A + B = AB _____ Zn + ___ HCl \rightarrow _ZnCl₂ + _H_{2 (g)}

- Steel Wool is Iron (Fe).
- The battery sends an electric current through the thin wire (700°C)
- Iron reacts with Oxygen in air and creates Iron Oxide.

Iron + OxygenIron Oxide $_Fe + _O_2$ $_Fe_2O3$

Decomposition Reaction: A complex molecule ______down to make _____ ones.

Opposite of Synthesis Reaction. AB \rightarrow A + B $H_2O \longrightarrow H_2 + O_2$ (Electrolysis of Water)

Demonstration – Electrolysis.

What is happening in the beaker? Can you guess the chemical change?

8-8	
- 	
8	
N N	
x== H	
N N	
2	
8-8	
8 12 8	
8.##	

Black Snake Experiment

Sodium bicarbonate breaks down into sodium carbonate, water vapor, and carbon dioxide gas. The burning sugar in oxygen produces water vapor and carbon dioxide gas. The snake is carbonate with black carbon particles:

 $2 \text{ NaHCO}_3 \rightarrow \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2$ $C_2H_5OH + _ O_2 \rightarrow _ CO_2 + _ H_2O$

Single Displacement: When one element ______ with another element in a compound. BC + A \rightarrow AC + B

Which was the single displacement reaction and which was the combustion reaction?

Hydrogen gas reacts with Oxygen. $2H_2 + O_2 \rightarrow 2H_2O$ Reaction between zinc and hydrochloric acid is $Zn + HCl \rightarrow H_2 + ZnCl_2$.

Answer= Synthesis Reaction

Answer= Single Displacement Reaction

Part 5 Lesson 2 Continued Types of Chemical reactions

Double Displacement: When _____ different molecules _____ places, forming two entirely different compounds.

 $AB + CD \rightarrow AD + CB$ $AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$

Demonstration – Chemical Change with baking soda and vinegar.

- The chemical reaction occurs in two steps.
- The **double displacement** reaction occurs first. ______ in vinegar reacts with sodium______ to form ______ and carbonic ______:
- NaHCO₃ + HC₂H₃O₂ \rightarrow NaC₂H₃O₂ + H₂CO₃
- Carbonic acid is unstable and goes through a decomposition reaction to produce carbon dioxide gas:
- $H_2CO_3 \rightarrow H_2O + CO_{2(g)}$

Cleopatra's Needle (Chalk and Vinegar) 2 HC₂H₃O₂ + CaCO₃ -> Ca(C₂H₃O₂)₂ + CO₂ + H₂O

Acid / Base: When an acid and base _____ with _____

Acid-Base RXN: The acid and base neutralize each other producing a ______.

The H(+) cation of the acid combines with the OH(-) anion of the base to form

The compound formed by the cation of the base and the anion of the acid is called a salt.

Which is the acid and which is the base? Which is the salt, and which is the water?

Which is the acid and which is the base? Which is the salt, and which is the water?

6 L

Quiz Wiz, Name the type of Chemical Reaction.

Word Bank is the 6 types of chemical reactions.

1)	2)	3)
4)	5)	6)
7)	8)	9)
10)	*11)	

Name the six types of chemical reactions below?

Part 5 Lesson 3 Atomic Bonding

Chemical Bonding: The attraction that _____ atoms close to each other.

Ionic, Covalent, Metallic

Covalent bonding occurs by a ______ of _____ electrons (Strongest) (SPONCH).

Which choice best describes a covalent bond? A.) This bond is formed from the attraction between mobile electrons and fixed positively

2C+4H

charged metallic atoms.

B.) The electrostatic bond between two ions formed through the transfer of one or more electrons.

C.) An electrostatic bond between a hydrogen atom in a covalent bond and an electronegative atom such as oxygen.

D.) The bond formed by the sharing of a pair of electrons by two atoms.

Ionic bonding (+/-) Bonds created by the attraction of opposite _____. Transfer of an electron

Ionization: The process of ______ electrons from an atom to form ions.

Ionic - One atom strips electron from the other so both are now stable. Held then by _____ /____charge

Ionic Bonding: Forms crystal _____

Metal bonding to a _____-metal will always be an ionic bond.

Which is a metal and which is a non-metal? What type of bond is this?

Which choice best describes a lonic bond?

A.) This bond is formed from the attraction between mobile electrons and fixed positively charged metallic atoms.

B.) The electrostatic bond between two ions formed through the transfer of one or more electrons.

C.) An electrostatic bond between a hydrogen atom in a covalent bond and an electronegative atom such as oxygen.

D.) The bond formed by the sharing of a pair of electrons by two atoms.

Describe the ionic bond between Lithium and Fluorine below.

Please describe the difference between ionic and covalent bonds based on the picture below.

Superscript can be used in connection with atomic charge or ionization. Some atoms lose an electron or electrons and bear a positive charge.

Example 3+ (lost electrons)

- oxidation State Subscript (number of Iron atoms) Symbol -Which atom below formed a cation, and which formed an anion? Electron is given away

Electron Affinity: The amount of energy required to _____ an electron from a singly charged negative ion.

Which atom below has a high electron affinity, and which has a low electron affinity?

First - AgNO3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO3(aq) Second- AgNO3(aq) + Nal(aq) \rightarrow Agl(s) + NaNO3(aq)

Metallic bonding: The bonding between atoms within _____. The sharing of ______ free electrons. Sharing of free electrons between a lattice of metal atoms.

Which choice best describes a metallic bond?

A.) This bond is formed from the attraction between mobile electrons and fixed positively charged metallic atoms.

B.) The electrostatic bond between two ions formed through the transfer of one or more electrons.

C.) An electrostatic bond between a hydrogen atom in a covalent bond and an electronegative atom such as oxygen.

D.) The bond formed by the sharing of a pair of electrons by two atoms.

Optional Notes

5 N	
6	
8 N	
8 8	
8 - N	
8 8	
8	
8	
8-2-8	
8	

Please label as ionic, covalent, or metallic bond (Anion? Cation?)

Part 5 Lesson 4 Acid Base

An acid is any hydrogen-containing substance that is capable of ______ a proton (hydrogen ion) to another substance.

Acidic substances are usually identified by their ______ taste. ... Acids are known to turn litmus _____.

A base is a molecule or ion able to ______ a hydrogen ion from an acid.

Which is the acid and which is the base?

Water in a pure state has a _____ pH.

• Pure water is neither acidic or basic.

Provide some info on the pH scale below as described in the slideshow.

Use the diagram below to assist you in writing a short paragraph that describes the differences between acids and bases?

Which is an acid? And which is a base?

A substance which when added	A substance which when added to water produces
to water produces hydroxide	hydrogen ions [H+].
ions [OH-].	React with zinc, magnesium, or aluminum and form
Turns litmus blue.	hydrogen ($H_{2(g)}$).
They react with most cations	React with compounds containing CO ₃ ²⁻ and form
to precipitate hydroxides.	carbon dioxide and water.
Taste bitter	Turns litmus red.
Do not taste in the lab.	Taste sour (lemons contain citric acid, for example).
	Tasting Acids in the lab would be unsafe.

Please complete as described in the slideshow? What are some of the mystery solutions.

1-2	2-4 4-6 6-8 8-10 10-12 12-14
	OOOOO
0	

Part 5 Lesson 6 Bonds, Hydrogen Bonds

Electronegativity is the tendency for an atom to ______ when forming a bond.

It is affected by both its atomic number and ______ of its valence electrons from the nucleus.

Electronegativity _____ from lower left to upper right.

INCREASING ELECTRONEGATIVITY

1 H Huttopen																	2 He
3	4	1										5	6	7	8	9	10
Li	Be											B	Cudeon	N Nacopen	O O O O O O O O O O O O O O O O O O O	F	Ne
11	12	1										13	14	15	16	17	18
Na Sodian 2.0003710	Mg 24,3050											AI 26.981538	Si Silem 28.0855	P 30.973761	S	Cl (Morac 35.4527	Ar Arpm 30.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K Manuala Manuala	Ca Calcium 40.078	Sc Scandaum 44.955910	Ti Titatian 47.867	Vanschum 50.0415	Cr	Mn Manganese 54.938049	Fe Bost 55, 545	Co Cikuk 58,933200	Ni Nickut 58.4054	Cu Copper 63.546	Zn 2300 65.39	Ga Gallant 69.723	Gernarians 72.61	As Attente 24,92160	Selement T8.96	Br Perman 79.904	Kr Krypten 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb Rabidium 85.4678	Streature 87.62	Ynsus ss. 90555	Zr 91,224	Nb Notium 92,90638	Mo Mo	Tc Technorium (98)	Ru Ratheniaru 101.07	Rh Rhodians 102,90550	Pd Palladeant 106.42	Ag Sabar 107,8682	Cd Calman	In Infan 114.818	Sn 118,710	Sb 121,260	Te Tehntan 127.60	I Iodae 126,90447	Xe Xenca 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba Barinte 137,327	La Lasthanath 138.9055	Hafinara 178.49	Ta Tambas 180,9479	W	Re Rhoment 186,207	Os	Ir 192.217	Pt Plane	Au Gall 195.95655	Hg	TI Thefauty 204.3833	Pb Lead 207.2	Bi Biands 208.98938	Po	At	Rn Radeo (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114		1000	1000	
Fr	Ra Radium	Ac	Rf	Db Datestant (262)	Sg	Bh Bohrsen (2021)	Hs Hassian (265)	Mt Mt	(2022)	12225	(277)						

The most strongly electronegative element is =_____ The least electronegative element is =_____

Electronegativity is a measure of the ______ of an atom for the electrons in a chemical bond.

The higher the electronegativity of an atom, the _____ its attraction for bonding electrons.

- Electrons with low ionization energies have a _____ electronegativity because their nuclei do not exert a strong attractive force on electrons.
- Elements with high ionization energies have a electronegativity due to the strong pull exerted on electrons by the nucleus.

A polar bond: Results in the ______ sharing of the electrons in the bond.

When two unlike atoms a	re covalently bonded, the	will be
more strongly	to the atom of greater electronegativity	

Hydrogen Bond (Weak): A chemical bond in which a ______ atom of one molecule is attracted to an atom.

• Especially a nitrogen, oxygen, or flourine atom of another molecule.

Which choice best describes a hydrogen bond? A.) This bond is formed from the attraction between mobile electrons and fixed positively charged metallic	What's the electron negativity difference of water H2O?
atoms.	
B.) The electrostatic bond between two ions formed	
through the transfer of one or more electrons.	
C.) An electrostatic bond between a hydrogen atom	What's the electron negativity difference of
in a covalent bond and an electronegative atom	5

		16
such as oxygen.	C ₂ H ₆ Ethane?	
D.) The bond formed by the sharing of a pair of		
electrons by two atoms.		

The three classes of bonds

Nonpolar _____

___ Covalent

lonic

The most commonly used electronegativity scale is Pauling's. Most Periodic Tables gives the value for each element.

Differences 1.7 or greater, the bond is usually ionic,

Differences Less than 1.7, the bond is usually covalent,

Unless the difference is less than 0.5 the bond has some degree of polarity

Differences of less than 0.5 are considered to be nonpolar.

Which one is polar covalent and which one nonpolar?

Please record the type of bond based on electron negativity differences. Nonpolar Covalent, Polar Covalent, Ionic (Use your periodic table)

Differences 1.7 or greater, the bond is usually ionic,

Differences Less than 1.7, the bond is usually covalent,

Unless the difference is less than 0.5 the bond has some degree of polarity Differences of less than 0.5 are considered to be nonpolar.

Which choice best describes a covalent bond? Bond types: Ionic, Covalent, Metallic, Hydrogen

A.)_____ This bond is formed from the attraction between mobile electrons and fixed positively charged metallic atoms.

B.) _____ The electrostatic bond between two ions formed through the transfer of one or more electrons.

C.)_____An electrostatic bond between a hydrogen atom in a covalent bond and an electronegative atom such as oxygen.

D.)_____The bond formed by the sharing of a pair of electrons by two atoms.

Name the type of bond below. Ionic, Covalent, Metallic, Hydrogen

Part 5 Lesson 6 Quiz and Review

Quiz Wiz 1-10: Label as either...

Covalent, Ionic, Metallic, Hydrogen Bonding

Polarity would be nice for covalent bonds if you can.

1)	2)	3)
4)	5)	6)
7)	8)	9)
10)	*11)	

Activation Energy: The ______ amount of energy needed for a chemical reaction to take place.

Part 5 Lesson 7 Endothermic and Exothermic RXN's

Endothermic and Exothermic Reactions

Endo =	
Exo =	

Exothermic Reactions: Chemical reactions that ______ energy in the form of heat, light, or sound.

The products contain _____ energy than the reactants Heat is _____ to the surroundings. (Not destroyed) Bond-making is an exothermic process. Energy is released when _____ bonds form.

Potential Energy

Which is an Exothermic RXN? And which is a endothermic RXN?

Bond-breaking is an endothermic process.

To figure out if a reaction is exothermic or endothermic.

Observe how the temperature of the surroundings ____

An exothermic process releases ______ that causes the temperature of the immediate surroundings to increase.

An endothermic process ______ heat and makes the surroundings colder.

Thermite Reaction.

Can we balance this before the video.

 $_$ Al (s) + $_$ Fe2O₃ \rightarrow $_$ Fe(s) + $_$ Al2O₃ (s)

- Is this an endothermic or exothermic reaction?

Which is endothermic and which is exothermic?

Whether a reaction is endothermic or exothermic depends on the difference between the energy needed to break bonds and the energy released when new bonds form.

Please fill out the diagram below as described in the slideshow.

Elephant Toothpaste Procedure

1.) Mix 120 ml of hydrogen peroxide (H2O2 aq) with 60 ml of liquid dish (Ol- aq) soap and a few drops of food coloring.

2.) Add this mixture to the empty soda bottle and place it on the spill tray.

3.) In a separate container, mix one packet (1 teaspoon or 11 ml / 7 grams) of active yeast with a little warm water (2 tablespoons / 30 ml) and let it sit for 5 minutes.

4.) Remove clumps of yeast so you just add the liquid with funnel.

5.) Pour the yeast mixture into the soda bottle with a funnel and watch the reaction.

6.) Feel the container for heat. (Exothermic)

7.) All contents can be disposed of in the sink.

Elephant Toothpaste

The chemical formula for hydrogen peroxide is H2O2.

Hydrogen peroxide is not stable so it's always decomposing into water and oxygen.

This occurs slowly under normal conditions.

Yeast make the reaction go much faster and the dishwashing soap creates the foam.

The overall equation for this reaction is:

 $H_2O_2(aq) + OI^{-}(aq) \rightarrow I^{-}(aq) + H_2O(I) + O_2(g)$

Endothermic reactions: These reactions ______energy in order to proceed.

The products contain ______ energy than the reactants, heat is taken in

or absorbed from the surroundings.

A temperature ______ is measured during the reaction.

Energy		
		Products
	Reactants	
		>

Endothermic Reaction "Alka-Seltzer" Procedure

Fill clear container with 100 ml of water.

Record temperature of water for 30, 60, 90, 120 seconds in spreadsheet.

Keep thermometer in container

Add 2 Alka-Seltzer tablets to the 100 ml of water.

Record temperature for 30, 60, 90,120 seconds on spreadsheet.

Time in Seconds (H2O)	Temperature (Celsius)
0	
30	
60	
90	
120	

Time in Seconds (Alka-Seltzer)	Temperature (Celsius)
0	
30	
60	
90	
120	

Please complete a line graph below. (Note: The graph below should be in the range of your highest and lowest temperatures) not 0 to 100 °C

Please describe the reaction in the space below. Can you balance the equation below.

 $\underline{\quad C6H8O7(aq) + _NaHCO3(aq) \rightarrow _H2O(I) + _CO2(g) + _Na3C6H5O7(aq)}_{\text{vater} + \text{ carbon dioxide} + \text{ sodium citrate}}$

	L

Part 5 Lesson 8 Redox RXN's

Any reaction between an element or compound and ______ is known as oxidation.

The reaction between magnesium metal and oxygen, for example, involves the oxidation of magnesium.

 $\underline{\qquad} Mg(s) + O_2(g) \rightarrow \underline{\qquad} MgO(s)$

This is also true of hydrogen. Oxidation is loss of hydrogen. Reduction is gain of hydrogen.

Vinegar, Steel Wool, and the Law Conservation of Matter & Oxidation. What happened?

_, or

Oxidation number of an element: The number of electrons _____, __

_as a result of chemical bonding. Oxidation is always followed by reduction

- Oxidation: A ______ in oxidation number
- Reduction: A _____ in oxidation number

To oxidize an atom or molecule means you have increased its overall positive charge. Removing electrons does this. Atoms or molecules that give up electrons (or become oxidized) are electron donors. Atoms or molecules that take on electrons (or become reduced) are called electron acceptors.

Color the arrows correctly. Please describe which arrow represents oxidation (Orange), and which represents reduction (blue).

An oxidation-reduction (redox) reaction is a type of chemical reaction that involves a _______ of electrons between two species. An oxidation-______ reaction is any chemical reaction in which the ______ number of a molecule, atom, or ion changes by ______ or _____ an electron.

Iron Copper Switch-A-Roo

- Place a clean nail into a plastic dish
- Add 10 drops of Copper Sulfate CuSO4 to a part of a nail.
- Wait 2 minutes

Observe nail? What happened? Rinse spot on nail if you need a better look

8-8	
1.20	
8	
X N	
x=x	
8==H	
8.2.8	
8-8	
N THE R	
8-2-8	

------Teacher can remove this word bank to make more difficult-------Possible Answers

IONIZATION, ACID, ACTIVATION, BASE, CATION, COMBUSTION, DECOMPOSITION, DOUBLEDISPLACEMENT, ELECTRONEGATIVITY, ELECTRONS, ENDOTHERMIC, EXOTHERMIC, HYDROGEN, ION, OXIDATION, REDUCTION, REORGANIZATION, SINGLEDISPLACEMENT, SYNTHESIS, HYDROGEN, HYDROXIDE, NEUTRAL, POLAR

Across	Down
2 is a measure of the	1. (Two words) When one element trades
attraction of an atom for the electrons in	a places with another element in a compound.
chemical bond.	3. When an atom strips an electron, now one
6. (Two Words) When the anions and cation	ons atom has 1+ (),
of two different molecules switch places,	4 Reactions: Chemical
forming two entirely different compounds	reactions that releases energy in the form of
7. Acid: a substance which when added to	b heat, light, or sound.
water produces ions [H+].	Acid RXN: The acid and base
9. Chemical Change: The change of	neutralize each other producing a
substances into other substances through	a TheH(+) cation of the acid combines with
of the atoms	the OH(-) anion of the base to form water
10. When oxygen combines with another	and salt.
compound to form water and carbon diox	ide. 7 Bond: A chemical bond in
11 reactions: These reactions	ons which a hydrogen atom of one molecule is
absorb energy in order to proceed.	attracted to an electronegative atom.
16 Energy: The least amou	Int 8 Reaction: When two or more
of energy needed for a chemical reaction	to simple compounds combine to form a more
take place.	complicated one
18. A bond: Results in the	12 Reaction: A complex molecule
unequal sharing of the electrons in the bo	nd. breaks down to make simpler ones.
20. Water in a pure state has a	pH. 13. Base: a substance which when added to
21. Electrons with low energi	es water produces ions [OH-].
have a low electronegativity because their	14. A decrease in oxidation number
nuclei do not exert a strong attractive force	e 15. A charged atom.
on electrons.	17. Any reaction between an element or
	compound and oxygen is known as
	10. To ovidize on etcm or malesule means
	19. To oxidize an atom of molecule means
	you have increased its overall positive

charge. Removing _____ does this. 22. An _____ is any hydrogen-containing substance that is capable of donating a proton (hydrogen ion) to another substance.

Part 5 Review Game

1-10 = 10 pts * = Bonus + 1 pt, Lesson 8 (Secretly write owl in correct space +1 pt) Final Question = 5 pt wager

BONDING	NEGATIVIITY	STICK AROUND	STICK AROUND	SPY GAMES Bonus round
1)		11)	1 ()	1 pt each
	6)	11)	16)	*21)
2)	7)	12)	17)	*22)
3)	8)	13)	18)	*23)
4)	9)	14)	19)	*24)
5)	10)	15)	20)	*25)

Final Question Wager _____ /5_ Answer: ______

Name: Due: Today Score ____ / 100

Copyright 2024 SlideSpark .LLC All Rights Reserved

Part 5 Chemical RXN's

Name:

				Due Do	ate:	
87 Fr (223)	55 Cs 132.90545	37 Rb 85.4678	19 K 39.0983	11 Na 22.989770	3 Li 6.941	1 H 1.00794
88 Ra	56 Ba 137.327	38 Sr ^{87.62}	20 Ca 40.078	12 Mg 24.3050	4 Be 9.012182	
89 Ac	57 La 138.9055	39 Y 88.90585	21 Sc 44.955910			•
104 Rf	72 Hf 178.49	40 Zr 91.224	22 Ti 47.867			
105 Db	73 Ta 180.94.79	41 Nb 92.90638	23 V 50.9415			
106 Sg	74 W 183.84	42 Mo _{95.94}	24 Cr 51.9961			
107 Bh (262)	75 Re 186.207	43 Tc	25 Mn 54.938049			
108 HS	76 Os 190.23	44 Ru 101.07	26 Fe 55.845			
109 Mt	77 r 192.217	45 Rh 102.90550	27 Co 58.933200			
110 (269)	78 Pt 195.078	46 Pd 106.42	28 Ni 58.6534			
111 (272)	79 Au 196.56655	47 Ag 196.56655	29 Cu 63.545			
112 (277)	80 Hg 200.59	48 Cd 112.411	30 Zn 65.39			
	81 TI 204.3833	49 In 114.818	31 Ga 69.723	13 Al 26.581538	5 B 10.811	
114 (289) (287)	82 Pb 207.2	50 Sn 118.710	32 Ge 72.61	14 Si 28.0855	C 12.0107	
	83 Bi 208.58038	51 Sb 121.760	33 As 74.92160	15 P 30.973761	7 N 14.00674	
116 (289)	84 Po (209)	52 Te 127.60	34 Se 78.96	16 S 32.066	8 0 15.9994	
	85 At (210)	53 126.90447	35 Br 79.504	17 Cl 35.4527	9 F 18.9984032	
118 (293)	86 Rn (222)	54 Xe 131.29	36 Kr 83.80	18 Ar 39.948	10 Ne 20.1797	2 He 4.002602

(262)	(259)	(258)	(257)	(252)	(251)	(247)	(247)	(243)	(244)	(237)	238.0289	231.035888	232.0381
Ļ	No	Md	Fm	Ľ	Ç	Bk	Cm	Am	Pu	Np		Pa	Τh
103	102	101	100	66	86	97	96	56	94	56	92	91	06
174.967	173.04	168.93421	167.26	164.93032	162.50	158.92534	157.25	151.964	150.36	(145)	144.24	140.50765	140.116
ГП	Чh	Тm	ц	Но	Ŋ	Ե	Gd	Ē	Sm	Pm	Nd	Pr	Ce
71	70	69	89	67	66	65	64	63	62	61	60	59	58

Part 5 Lesson 1 Types of Chemical Reactions

Chemical Change: The change of substances into other substances through a rearrangement of the atoms.

The 6 Types of Chemical Reactions

Combustion: When <mark>oxygen</mark> combines with another compound to form water and carbon dioxide.

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$ Methane Oxygen Carbon Dioxide Water

Describe what goes in and out of combustion below. Word bank: Fuel, Oxygen, Heat, Exhaust, Heat , Matter In = Matter Out and Energy In = Energy Out

- $\underline{\qquad} Zn + \underline{2} HCI \rightarrow ZnCI_2 + \underline{H}_{2 (g)}$
- Steel Wool is Iron (Fe).
- The battery sends an electric current through the thin wire (700°C)
- Iron reacts with Oxygen in air and creates Iron Oxide.
 Iron + Oxygen
 Iron Oxide

4 Fe + 3 O2 2 Fe2O3

Decomposition Reaction: A complex molecule breaks down to make simpler ones.

Opposite of Synthesis Reaction. AB \rightarrow A + B

 $\frac{2}{2}$ H₂O ---> $\frac{2}{2}$ H₂ + ___O₂ (Electrolysis of Water)

Demonstration – Electrolysis. What is happening in the beaker? Can you guess the chemical change?

 Electrolysis of water is the decomposition of water (H2O) into oxygen (O2) and hydrogen (H).

Black Snake Experiment

Sodium bicarbonate breaks down into sodium carbonate, water vapor, and carbon dioxide gas. The burning sugar in oxygen produces water vapor and carbon dioxide gas. The snake is carbonate with black carbon particles:

$2 \text{ NaHCO}_3 \rightarrow \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2$ C₂H₅OH + 3 O₂ \rightarrow 2 CO₂ + 3 H₂O

Single Displacement: When one element trades places with another element in a compound. BC + A \rightarrow AC + B

Which was the single displacement reaction and which was the combustion reaction?Hydrogen gas reacts with Oxygen. $2H_2 + O2 \rightarrow 2H_2O$ Answer=Reaction between zinc and hydrochloric acid is Zn + HCl \rightarrow H2 + ZnCl2.Answer=

Part 5 Lesson 2 Continued Types of Chemical reactions

Double Displacement: When two different molecules switch places, forming two entirely different compounds.

Demonstration – Chemical Change with baking soda and vinegar.

- The chemical reaction occurs in two steps.
- The **double displacement** reaction occurs first. Acetic acid in vinegar reacts with sodium bicarbonate to form sodium acetate and carbonic acid:
- NaHCO₃ + HC₂H₃O₂ \rightarrow NaC₂H₃O₂ + H₂CO₃
- Carbonic acid is unstable and goes through a **decomposition** reaction to produce carbon dioxide gas:
- $H_2CO_3 \rightarrow H_2O + CO_{2(g)}$

Cleopatra's Needle (Chalk and Vinegar)

2 HC2H3O2 + CaCO3 -> Ca(C2H3O2)2 + CO2 + H2O Vinegar (I) Chalk (s) Solution (aq) Carbon Dioxide(g) Water (I)

Acid / Base: When an acid and base react with each other.

Acid-Base RXN: The acid and base neutralize each other producing a salt.

The H(+) cation of the acid combines with the OH(-) anion of the base to form water. The compound formed by the cation of the base and the anion of the acid is called a salt.

HCL	+	NaOH	\rightarrow	H2O +	NaCl
Acid	+	Base	->	Water +	Salt

Which is the acid and which is the base? KOH is the Base, HCL is the Acid Which is the salt, and which is the water? KCL is the Salt and H2O) is Water

Which is the acid and which is the base? H3PO4 is the Acid and Ca(OH)2 is the base Which is the salt, and which is the water? H2O is water, and Ca3(PO)4 is salt

Phosphoric Acid + Calcium Hydroxide react to form water + calcium phosphate

Quiz Wiz, Name the type of Chemical Reaction. Word Bank is the 6 types of chemical reactions

	chemical reactions.	
1) Single Displacement	2) Acid Base Reaction	3) Decomposition Reaction
4) Combustion	5) Single Displacement	6) Synthesis Reaction
7) Single Displacement	8) Double Displacement	9) Combustion
10) Combustion	*11) Gomez Bieber Switch	

Name the six types of chemical reactions below?

Part 5 Lesson 6 Atomic Bonding

Chemical Bonding: The attraction that holds atoms close to each other.

Ionic, Covalent, Metallic

Covalent – <mark>Share</mark> electrons Ionic – <mark>Gain</mark> or lose electrons (transfer) Metallic- Many free electrons

Covalent bonding occurs by a sharing of Valence electrons (Strongest) (SPONCH).

Which choice best describes a covalent bond?

A.) This bond is formed from the attraction between mobile electrons and fixed positively charged metallic atoms.

B.) The electrostatic bond between two ions formed through the transfer of one or more electrons.

C.) An electrostatic bond between a hydrogen atom in a covalent bond and an electronegative atom such as oxygen.

D.) The bond formed by the sharing of a pair of electrons by two atoms.

Ionic bonding (+/-) Bonds created by the attraction of opposite <mark>charges.</mark> Transfer of an electron

Ionization: The process of removing electrons from an atom to form ions.

Ionic - One atom strips electron from the other so both are now stable. Held then by + /- charge

Ionic Bonding: Forms crystal lattice.

Metal bonding to a non-metal will always be an ionic bond.

Which is a metal? and which is a non-metal? What type of bond is this?

Which choice best describes a lonic bond?

A.) This bond is formed from the attraction between mobile electrons and fixed positively charged metallic atoms.

B.) The electrostatic bond between two ions formed through the transfer of one or more electrons.

C.) An electrostatic bond between a hydrogen atom in a covalent bond and an electronegative atom such as oxygen.

D.) The bond formed by the sharing of a pair of electrons by two atoms.

lon: A charged atom.

When an atom strips an electron, now one atom has 1+ (cation), and the other has -1 (anion)

Describe the ionic bond between sodium and chlorine below.

Superscript can be used in connection with atomic charge or ionization. Some atoms lose an electron or electrons and bear a positive charge.

Example 3+ (lost electrons)

Which atom below formed a cation, and which formed an anion?

Cations are positively-charged ions (atoms or groups of atoms that have more protons than electrons due to having lost one or more electrons). Anions are negatively-charged ions (meaning they have more electrons than protons due to having gained one or more electrons).

Electron Affinity: The amount of energy required to detach an electron from a singly charged negative ion.

Which atom below has a high electron affinity, and which has a low electron affinity?

Precipitation Reactions: Occur when cations and anions of aqueous solutions combine to form an insoluble ionic solid, called a precipitate.

First - AgNO3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO3(aq) Second- AgNO3(aq) + Nal(aq) \rightarrow Agl(s) + NaNO3(aq)

Metallic bonding: The bonding between atoms within metals. The sharing of many free

electrons. Sharing of free electrons between a lattice of metal atoms.

Which choice best describes a metallic bond?

A.) This bond is formed from the attraction between mobile electrons and fixed positively charged metallic atoms.

B.) The electrostatic bond between two ions formed through the transfer of one or more electrons.

C.) An electrostatic bond between a hydrogen atom in a covalent bond and an electronegative atom such as oxygen.

D.) The bond formed by the sharing of a pair of electrons by two atoms.

Provide some information about the three bonds below

Provide some information about the three bonds below

Ionic

-Formed by ions -Electrons are transferred Attraction between cation 41 and anion -1, -High melting and boiling point. -Force of attraction between atoms -Use valence electrons to bond. -Now have full octets -More stable

Metallic

Arises from the electrostatic attractive force between conduction electrons and positively charged metal ions. The sharing of many free electrons among a structure of positively charged ions.

-Formed from a Nonmetal and nonmetal -Electrons are shared -Low melting and boiling point

Covalent

Part 5 Lesson 4 Acid Base

An acid is any hydrogen-containing substance that is capable of donating a proton (hydrogen ion) to another substance.

Acidic substances are usually identified by their sour taste. ... Acids are known to turn litmus red.

A base is a molecule or ion able to accept a hydrogen ion from an acid.

Which is the acid and which is the base?

Water in a pure state has a neutral pH.

• Pure water is neither acidic or basic.

Provide some info on the pH scale below as described in the slideshow.

Use the diagram below to assist you in writing a short paragraph that describes the differences between acids and bases?

Which is an acid? And which is a base?

Base	ACID
A substance which when added to water	A substance which when added to water
produces hydroxide ions [OH-].	produces hydrogen ions [H+].
Turns litmus blue.	React with zinc, magnesium, or aluminum
They react with most cations to	and form hydrogen $(H_{2(g)})$.
precipitate hydroxides.	React with compounds containing CO ₃ ²⁻
Taste bitter	and form carbon dioxide and water.
Do not taste in the lab.	Turns litmus red.
	Taste sour (lemons contain citric acid, for
	example).
	Tasting Acids in the lab would be unsafe.

Please complete as described in the slideshow? What are some of the mystery solutions.

Part 5 Lesson 6 Bonds, Hydrogen Bonds

Electronegativity increases from lower to upper right. INCREASING ELECTRONEGATIVITY

1 H																	2 He
3	4	1										5	6	7	8	9	4.003
Li	Be Bootant 9.012182											B 10.811	Caden 12.0107	N Natogan 14.00674	O 15.9994	F 18.9984032	Ne 20.1797
11	12	1										13	14	15	16	17	18
Na Solari 2.0003710	Mg											AI 26.981538	Si 28.0855	P	Salter 32.000	Cl Chiese 35.4527	Ar Anpro 30.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K Manuala Manuala	Ca Calcium 40.078	Sc Scandare 44.955910	Ti Titatian 47.867	V Vanadian 50.0415	Cr Charling 51,9961	Mn Manganese 54.938049	Fe Bon 55, 545	Co Cikuk 58,913200	Ni Notat 58.6034	Cu Copper 63.546	Zn 65.39	Galam Galam	Gernarian 72.61	As Attento 24.92160	Selement T8.96	Br Transc Transc	Kr Koppen 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb Rabidium 85.4678	Streature 87.62	Ynsus ss.90555	Zr 91,224	Nb Notion 92,90638	Mo Mo	Tc Tochaosam (96)	Ru Ratheniaru 101.07	Rh Rhodians 102,90550	Pd Palladuate 106.42	Ag 5804 107,8682	Cd Column 112.411	In Infan 114.818	Sn 118,710	Sb 121,260	Te	I Iodaw 126,90447	Xe Xeea 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba Bariute 137.327	La Lasthanath 138.9055	Hf Halines 178,49	Ta Tambas 180,9479	W Tangatan 183,84	Re 186.207	Os 190.23	Ir 192.217	Pterson 195,078	Au Gail 196.96655	Hg Marries 200,59	TI Thefauty 204,3833	Pb trait 207.2	Bi 208.98038	Po	At (210)	Rn Radeo (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114		10.000	10000	10-10 BO
Fr rangination (223)	Ra Radiani (226)	Ac.	Rf Reteriordante (261)	Db Datasas (252)	Suborput (263)	Bh Bohrium (262)	Hs Hassian (265)	Mt Material	(209)	(272)	(277)						

The most strongly electronegative element is = Fluorine The least electronegative element is = Francium

Electronegativity is a measure of the attraction of an atom for the electrons in a chemical bond.

The higher the electronegativity of an atom, the greater its attraction for bonding electrons.

 Electrons with low ionization energies have a low electronegativity because their nuclei do not exert a strong attractive force on electrons. Elements with high ionization energies have a high the strong pull exerted on electrons by the nucleus.

A polar bond: Results in the <mark>unequal</mark> sharing of the electrons in the bond.

When two unlike atoms are covalently bonded, the shared electrons will be more strongly attracted to the atom of greater electronegativity

Hydrogen Bond (Weak): A chemical bond in which a <mark>hydrogen</mark> atom of one molecule is attracted to an electronegative atom.

• Especially a nitrogen, oxygen, or fluorine atom of another molecule.

 Which choice best describes a hydrogen bond? A.) This bond is formed from the attraction between mobile electrons and fixed positively charged metallic atoms. B.) The electrostatic bond between two ions formed through the transfer of one or more electrons. C.) An electrostatic bond between a hydrogen atom in a covalent bond and an electroneagtive atom 	What's the electron negativity difference of water H ₂ O? H ₂ O Electron Negativity Difference Hydrogen = 2.20 Oxygen = 3.44 3.44 - 2.20 = 1.24
such as oxygen. D.) The bond formed by the sharing of a pair of electrons by two atoms.	What's the electron negativity difference of C ₂ H ₆ Ethane? C ₂ H ₆ Ethane Electron Negativity Diff. Hydrogen = 2.20 Carbon = 2.55 2.55 - 2.20 = .35

The three classes of bonds

Nonpolar <mark>Covalent</mark>

<mark>Polar</mark> Covalent

lonic

The most commonly used electronegativity scale is Pauling's. Most Periodic Tables gives the value for each element.

Differences 1.7 or greater, the bond is usually ionic,

Differences Less than 1.7, the bond is usually covalent,

Unless the difference is less than 0.5 the bond has some degree of polarity

Differences of less than 0.5 are considered to be nonpolar.

Which one is polar covalent and which one nonpolar?

Please record the type of bond based on electron negativity differences.

Please record the type of bond based on electron negativity differences. Nonpolar Covalent, Polar Covalent, Ionic (Use your periodic table)

Differences 1.7 or greater, the bond is usually ionic,

Differences Less than 1.7, the bond is usually covalent,

Unless the difference is less than 0.5 the bond has some degree of polarity

Differences of less than 0.5 are considered to be nonpolar.

Which choice best describes a covalent bond? Bond types: Ionic, Covalent, Metallic, Hydrogen

A.) Metallic: This bond is formed from the attraction between mobile electrons and fixed positively charged metallic atoms.

B.) lonic: The electrostatic bond between two ions formed through the transfer of one or more electrons.

C.)Hydrogen: An electrostatic bond between a hydrogen atom in a covalent bond and an electronegative atom such as oxygen.

D.) Covalent: The bond formed by the sharing of a pair of electrons by two atoms.

Part 5 Lesson 6 Quiz and Review

Quiz Wiz 1-10: Label as either...

Covalent, Ionic, Metallic, Hydrogen Bonding Polarity would be nice for covalent bonds if you can.

1) <mark>Covalent Polar</mark>	2) <mark>Ionic Bond</mark> Sodium = .93 Fluorine = 3.98 3.98 – .93 = 3.05	3) <mark>Ionic Bond</mark>
4) Metallic Bond	5) Covalent	6) <mark>Metallic</mark>
7) <mark>Covalent</mark>	8) Covalent Non-polar Hydrogen = 2.20 Carbon = 2.55 2.55 – 2.20 = .35	9) <mark>Ionic</mark>
10) <mark>Hydrogen Bond</mark>	*11) <mark>Sean Connery</mark>	

Activation Energy: The least amount of energy needed for a chemical reaction to take place.

Part 5 Lesson 7 Endothermic and Exothermic RXN's

Endothermic and Exothermic Reactions

Endo = InsideExo = Outside

Exothermic Reactions: Chemical reactions that release energy in the form of heat, light, or sound.

The products contain less energy than the reactants Heat is lost to the surroundings. (Not destroyed) Bond-making is an exothermic process. Energy is released when new bonds form.

Potential Energy

When two atoms form a strong covalent or ionic bond, chemical energy is <mark>converted</mark> into other forms of energy, usually in the form of heat and light

Which is an Exothermic RXN? And which is a endothermic RXN?

Bond-breaking is an endothermic process.

To figure out if a reaction is exothermic or endothermic.

Observe how the temperature of the surroundings change.

An exothermic process releases heat that causes the temperature of the immediate surroundings to increase.

An endothermic process absorbs heat and makes the surroundings colder.

Thermite Reaction.

Can we balance this before the video.

 $\frac{2}{2} \text{ Al (s)} + \underline{\qquad} \text{Fe2O3} \rightarrow \frac{2}{2} \text{ Fe(s)} + \underline{\qquad} \text{Al2O3 (s)}$

– Is this an endothermic or exothermic reaction?

Which is endothermic and which is exothermic?

Whether a reaction is endothermic or exothermic depends on the difference between the energy needed to break bonds and the energy released when new bonds form.

Please fill out the diagram below as described in the slideshow.

Elephant Toothpaste Procedure

1.) Mix 120 ml of hydrogen peroxide (H2O2 aq) with 60 ml of liquid dish (OI- aq) soap and a few drops of food coloring.

2.) Add this mixture to the empty soda bottle and place it on the spill tray.

3.) In a separate container, mix one packet (1 teaspoon or 11 ml / 7 grams) of active yeast with a little warm water (2 tablespoons / 30 ml) and let it sit for 5 minutes.

4.) Remove clumps of yeast so you just add the liquid with funnel.

5.) Pour the yeast mixture into the soda bottle with a funnel and watch the reaction.

6.) Feel the container for heat. (Exothermic)

7.) All contents can be disposed of in the sink.

Elephant Toothpaste

The chemical formula for hydrogen peroxide is H2O2.

Hydrogen peroxide is not stable so it's always decomposing into water and oxygen.

This occurs slowly under normal conditions.

Yeast make the reaction go much faster and the dishwashing soap creates the foam.

The overall equation for this reaction is:

 $H_2O_2(aq) + OI^{-}(aq) \rightarrow I^{-}(aq) + H_2O(I) + O_2(g)$

Endothermic reactions: These reactions absorb energy in order to proceed.

The products contain more energy than the reactants, heat is taken in or absorbed from the surroundings.

A temperature drop is measured during the reaction.

Endothermic Reaction "Alka-Seltzer" Procedure

Fill clear container with 100 ml of water.

Record temperature of water for 30, 60, 90, 120 seconds in spreadsheet.

Keep thermometer in container

Add 2 Alka-Seltzer tablets to the 100 ml of water.

Record temperature for 30, 60, 90,120 seconds on spreadsheet.

Time in Seconds (H2O)	Temperature (Celsius)	
0	22°	
30	22°	
60	22°	
90	22°	
120	22°	

Time in Seconds (Alka-Seltzer)	Temperature (Celsius)
0	22°
30	21°
60	18°
90	<mark>17°</mark>
120	15°

Please complete a line graph below. (Note: The graph below should be in the range of your highest and lowest temperatures) not 0 to 100 °C

Please describe the reaction in the space below. Can you balance the equation below.

 The reaction in this activity involves using sodium bicarbonate and citric acid to produce water and carbon dioxide. The tablets contain sodium bicarbonate (NaHCO₃) and citric acid. When the tablet is dissolved in water, bicarbonate (HCO₃⁻) and hydrogen ions (H⁺) are formed. Heat was lost to the surroundings measured by a small decrease in the temperature of the surrounding water.

 $\underline{\qquad} C_{6}H_{8}O_{7}(aq) + \frac{3}{8} NaHCO_{3}(aq) \rightarrow \frac{3}{8} H_{2}O(I) + \frac{3}{8} CO_{2}(g) + \underline{\qquad} Na_{3}C_{6}H_{5}O_{7}(aq)$ citric acid + sodium bicarbonate \rightarrow water + carbon dioxide + sodium citrate

Element	Before	After
C	9	9
Ю	11	11
0	16	16
Na	3	3

Part 5 Lesson 7 Redox RXN's

Any reaction between an element or compound and oxygen is known as oxidation.

The reaction between magnesium metal and oxygen, for example, involves the oxidation of magnesium.

 $\frac{2}{2} \operatorname{Mg}(s) + \operatorname{O}_2(g) \rightarrow \frac{2}{2} \operatorname{MgO}(s)$

This is also true of hydrogen. Oxidation is loss of hydrogen. Reduction is gain of hydrogen.

Vinegar, Steel Wool, and the Law Conservation of Matter & Oxidation. What happened?

Vinegar is acidic and wears away the coating around the steel wool. The steel wool then oxidizes with the oxygen in the air. $4Fe + 3O_2 => 2Fe_2O_3$

The oxidation reaction pulls the balloon into the bottle because with less O2 as a gas, air pressure is less inside the bottle and the outside air pressure pushes the balloon inward. The bottle without the balloon may have gained a little mass as it pulled in oxygen from the surrounding air. The covered bottle did not gain any mass.

Oxidation number of an element: The number of electrons lost, gained, or shared as a result of chemical bonding. Oxidation is always followed by reduction

- Oxidation: A increase in oxidation number
- Reduction: A decrease in oxidation number

To oxidize an atom or molecule means you have increased its overall positive charge. Removing electrons does this. Atoms or molecules that give up electrons (or become oxidized) are electron donors. Atoms or molecules that take on electrons (or become reduced) are called electron acceptors.

Rust is the term commonly used for the corrosion and oxidation of iron and its alloys, such as steel. Technically rust is Hydrated Iron (III) Oxide, also known as iron oxide (Fe²O³), as it is caused when iron reacts with oxygen and water - this reaction is known as oxidizing.

The Na starts out with an oxidation # of (0) and ends with and oxidation # of 1+.

USt

It has been oxidized from a sodium atom to a positive sodium ion.

The Cl₂ also starts with an oxidation # of (0), and ends with an oxidation number of 1-

> It has been reduced from chlorine atoms to negative chloride ions.

Color the arrows correctly. Please describe which arrow represents oxidation (Orange), and which represents reduction (blue).

An oxidation-reduction (redox) reaction is a type of chemical reaction that involves a transfer of electrons between two species. An oxidation-<mark>reduction</mark> reaction is any chemical reaction in which the <mark>oxidation</mark> number of a molecule, atom, or ion changes by gaining or losing an electron.

Iron Copper Switch-A-Roo

- Place a clean nail into a plastic dish
- Add 10 drops of Copper Sulfate CuSO4 to a part of a nail.
- Wait 2 minutes

Observe nail? What happened? Rinse spot on nail if you need a better look

Questions? Iron Copper switch-A-roo

• Which was oxidized and which was reduced in the reaction below?

The iron was <u>oxidized</u> because it changed from 0 to +². (donated 2 electrons)

The copper was <u>reduced</u> because it changed from +² to 0. (gained 2 electrons)

------Teacher can remove this word bank to make more difficult------

Possible Answers

IONIZATION, ACID, ACTIVATION, BASE, CATION, COMBUSTION, DECOMPOSITION, DOUBLEDISPLACEMENT, ELECTRONEGATIVITY, ELECTRONS, ENDOTHERMIC, EXOTHERMIC, HYDROGEN, ION, OXIDATION, REDUCTION, REORGANIZATION, SINGLEDISPLACEMENT, SYNTHESIS, HYDROGEN, HYDROXIDE, NEUTRAL, POLAR

Down
1. (Two words) When one element trades
places with another element in a compound.
3. When an atom strips an electron, now one
atom has 1+ (),
4 Reactions: Chemical
reactions that releases energy in the form of
heat, light, or sound.
5. Acid RXN: The acid and base
neutralize each other producing a
TheH(+) cation of the acid combines with
the OH(-) anion of the base to form water
and salt.
7 Bond: A chemical bond in
which a hydrogen atom of one molecule is
attracted to an electronegative atom.
8 Reaction: When two or more
simple compounds combine to form a more
complicated one
12 Reaction: A complex molecule
breaks down to make simpler ones.
13. Base: a substance which when added to
water produces ions [OH-].
14. A decrease in oxidation number
15. A charged atom.
17. Any reaction between an element or
compound and oxygen is known as
19. To oxidize an atom or molecule means
you have increased its overall positive

charge. Removing _____ does this. 22. An _____ is any hydrogen-containing substance that is capable of donating a proton (hydrogen ion) to another substance.

Part 5 Review Game

Lesson 8 1-10 = 10 pts* = Bonus + 1 pt, (Secretly write owl in correct space +1 pt) Final Question = 5 pt wager

BONDING TIME	NEGATIVIITY LOST	STICK AROUND	STICK AROUND	SPY GAMES Bonus round
1) <mark>Atoms</mark>	6)Side A Gives an electron +1 Side B Gains an electron -1	11) <mark>C.)</mark> Precipitation Reaction	16) <mark>A=Hydrogen</mark> B=Metallic C=Covalent D=Ionic	*21) MAD Magazine
2) A=Acid Base B=Combustion C=Single Displacement D=Single Displacement E=Synthesis F=De- -composition	7) Ionic Bonding	12) H+ is Acid, OH- is Base	17) <mark>A=Endothermic</mark> B=Exothermic	*22) AUSTIN POWERS
3) SPONCH ELEMENTS	8) <mark>Metallic</mark> Bonding	13) Electron Negativity	18) <mark>A=Endothermic</mark> B=Exothermic	*23) <mark>Jason Bourne</mark>
4) Ionic Bond (Metal and nonmetal)	9) A formed Cation +1 B formed an Anion -1	14) A=Covalent B=Polar Covalent C=lonic D=Hydrogen	19) <mark>A=Oxidation</mark> B=Reduction	*24) Mr. Bean Johnny English
5) <mark>Ionization</mark>	10) Fluorine High Electron Affinity Sodium Low Electron Affinity	15) CI = 3.16, K = .82 3.1682 = 2.34	20) (B) Oxidation is loss of oxygen. (A) Reduction is gain of oxygen.	*25) <mark>SPY KIDS</mark>

Final Question Wager ____ /5_ Answer: Non-Polar Oil, Polar Water

Copyright 2024 SlideSpark .LLC All Rights Reserved

Name:

Due: Today Score ____ / 100