
Part 3 Work Bundle

Part 3 Lesson 1

John Dalton's Atomic Theories

All matter is composed of _____

Atoms cannot be made or _____

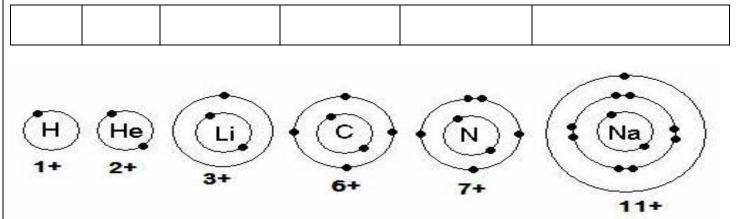
All atoms of the same element are _____

Different elements have different types of _____

Chemical reactions occur when atoms are _____

Compounds are formed from atoms of the _____

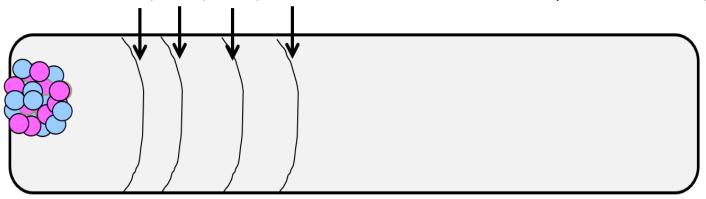
Please make some reference to John Daltons Atomic Assumptions in the space below.

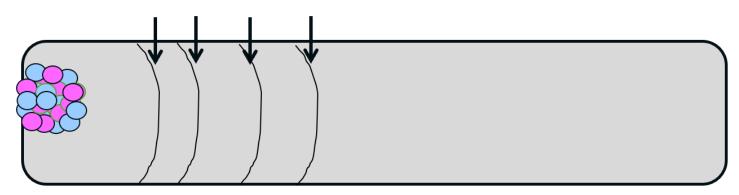

Which is not one of John Daltons Atomic Theories?

- A.) All matter is composed of atoms.
- B.) Atoms cannot be made or destroyed.
- C.) All atoms of the same element are different.
- D.) Different elements have different types of atoms
- E.) Chemical reactions occur when atoms are rearranged.
- F.) Compounds are formed from atoms of the constituent elements.

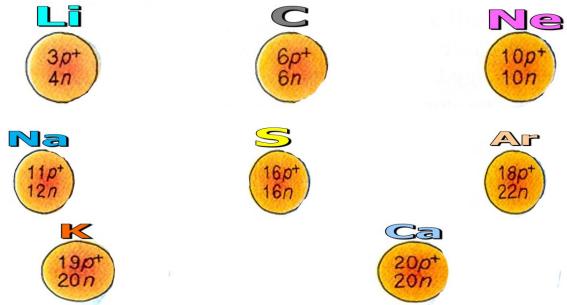
Which is not one of John Daltons Atomic Theories?

- A.) All matter is composed of atoms.
- B.) Atoms cannot be made or destroyed.
- C.) All atoms of the same element are identical.
- D.) Different elements have the same type of atoms.
- E.) Chemical reactions occur when atoms are rearranged.
- F.) Compounds are formed from atoms of the constituent elements.

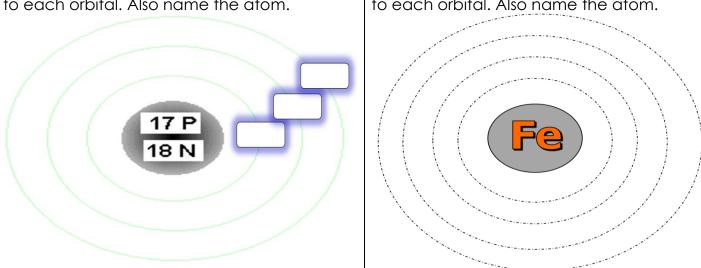

						3					
Atomic N	Atomic Mass = AMU Atomic Mass Units, The number of,, and										
	·										
Valence	electrons: Electro	ons in the	shell.								
Please re below.	cord in large bol	d numbers the nu	mber of <u>valenc</u>	e electrons ber	neath the element	S					
T						_					


Part 3 Lesson 2 Electron Orbitals

The number of ______ electrons determines the group placement of an element on the periodic table.


• The 1st, 2nd, 3rd, 4th electron shell can hold... (1st 18 elements)

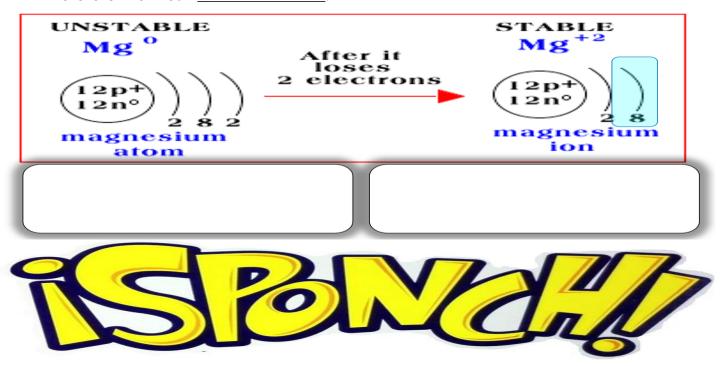
• The 1, 2, 3, 4 electron shell can hold... (after first 20 elements)


Please add the correct number of electrons to each orbital as described in the slideshow.

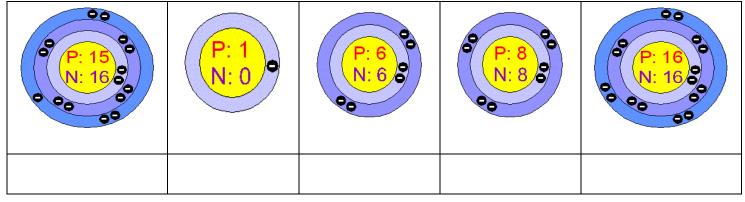
Please fill this atom with the most electrons possible. Also name the atom.

Please add the correct number of electrons to each orbital. Also name the atom.

Please add the correct number of electrons to each orbital. Also name the atom.



Most of the transition metals...Record the number of electron in each orbit from the slideshow



Part 3 Lesson 3 Lewis Dot Structures

 Valence electrons are the _____energy electrons in an atom and are therefore the most r_____.

Which element is below?

Octet Rule – Elements want ____ electrons in their outer shell (valence).

Add the correct electrons (Lewis Dots for the elements below)

HYDROGEN 1							HELIUM 2
Н							He
LITHIUM 3	BERRYLLIUM 4	BORON 5	CARBON 6	NITROGEN 7	OXYGEN 8	FLOURINE 9	NEON 10
Li	Be	В	C	N	0	F	Ne
SODIUM 11	MAGNESIUM 12	ALUMINUM 13	SILICON 14	PHOSPHORUS 15	SULFUR 16	CHLORINE 17	ARGON 18
Na	Mg	AI	Si	P	S	CI	Ar
POTASSIUM 19	CALCIUM 20						
K	Ca						

Molecule: _____ or more atoms that join together chemically.

Make a Lewis Dot for the elements below as described in the slideshow.

Part 3 Lesson 4 Organic Molecules

Please do a Lewis Dot Structure for the following Elements. Follow the video.

http://www.youtube.com/watch?v=ulyopnxjAZ8

Ne	Н	Не	Si	Li
С	O N	H ₂	H ₂ O	CO ₂

Please name and describe an important contribution of the chemists below?

Please create a Lewis Electron Dot diagram for the following molecules in the boxes below

H ₂	CH4 Methane	NF3
H ₂ O Water	NaCl Table Salt	O2 Oxygen gas Note – Double Bond

N ₂ Nitrogen gas Note – triple bond	CCl ₄	HCN Hydrogen Cyanide
C ₂ H ₆ Ethane	C ₃ H ₈ Propane	C4H10 Butane
C ₂ H ₆ O Ethanol	CO2 Carbon Dioxide	C ₅ Diamond
Make your own.	Al Aluminum	AlH ₃

Carbohydrate: A group of organic compounds, including sugars, starches and fiber, that is a major source of energy for animals. Made of ______ ____ (1:2:1)

Please complete a molecule of glucose $C_6H_{12}O_6$

$$-\frac{1}{C} - \frac{1}{C} - \frac{1}{C} - \frac{1}{C} - \frac{1}{C} - \frac{1}{C} = \frac{1}{C}$$

Part 3 Lesson 5 Organic Chemistry / Molecules Cont.

Hydrocarbon: An organic compound consisting entirely of _____ and _____.

Which is butane C₄H10? Which is pentane C₅H12? Which is propane C₃H8? What's left?

Alcohol: Mostly carbon and hydrogen with an ____ group

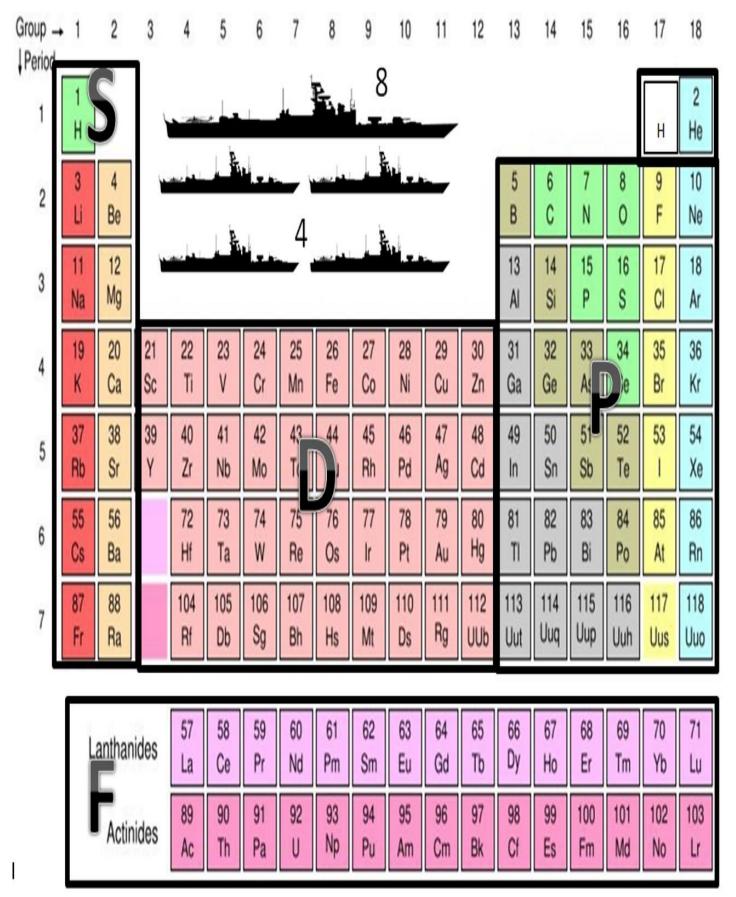
Create Lewis Dot Structure and then build Ethanol C2H6O

Circle and label the NH2 groups, and COOH group in the Amino Acid, Glutamine H2N-CO-(CH2)2-CH(NH2)-COOH

What is the empirical formula for this molecule? Name?

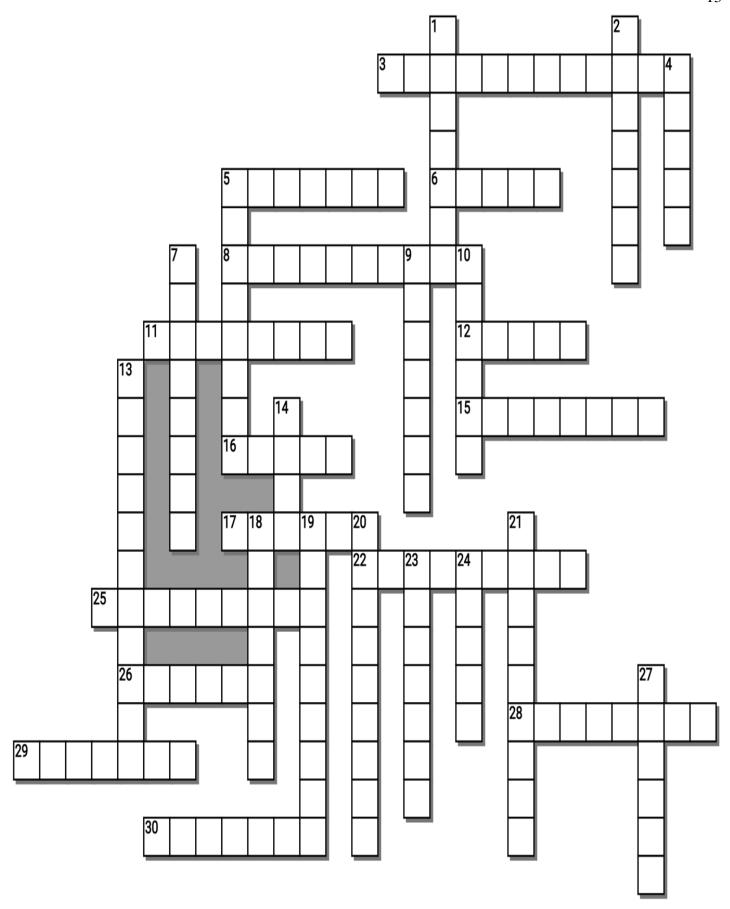
What is a group of nitrogenous organic compounds that are an essential part of living cells

$$O$$
 C C H H


What is this molecule?

H-C=O
H-C-OH
HO-C-H
H-C-OH
L-C-OH
H-C-OH

Part 3 Lesson 6 Electron Configurations


Heisenberg	Uncertainty Principle
_	You can't know with certainty both where an electron is and wh
	next

 You can't know with certainty both where an electron is and where it's going next.
 That makes it impossible to plot an orbit for an electron around a nucleus.
"Electron"
 Austrian physicist Erwin Schrödinger (1887-1961) It consisted of a dense nucleus surrounded by a cloud of electrons at various levels in orbitals.
Energy levels increase each period (Quantum) Na Sodium has more energy than Lithium
Electrons can get excited and enter a energy state. (energy added). - As they get further from the nucleus, their force gets and they can be removed more easily. (Next Part in the Unit, Atomic Bonding) - Electrons can drop to a energy state (energy removed).
Fill up orbitals in the order 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p - until you run out of electrons -Energy increases as you move up the energy levelsPauli Exclusion Principle: No two electrons in an atom can have quantum numbers. Different spins
1s 2s 3s 4s 5s 6s 7s
2p $3p$ $4p$ $5p$ $6p$ $7p$
3d 4d 5d 6d 7d
3d 4d 5d 6d 7d
4f 5f 6f
1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p
Electrons fill low energy orbitals (closer to the nucleus) before they fill higher energy ones. The 4f orbitals don't fill until after the 6s.
Try Silicon Atomic Number #14
Try Iodine Atomic Number #53
•

Aufbau principle: Electrons enter the lowest energy first

	·
Try Silicon Atomic	: Number #14
Try Magnesium	
Try Argon	
Try Krypton	
Try Potassium	
Try Potassium	
Try Aluminum	
	is the theoretical basis of modern physics that explains the nature and
benavior of matte	er and energy on the atomic and subatomic level.
	antized electrons are the highest energy electrons in an
atom and are the	erefore the most reactive.
What are the ele	ctron configurations for the following elements?
What are the e	lectron configurations for the following elements?
Nitrogen	
Calcium	
Arsenic	
	Make your own
	4 - 22 - 2
	1s ² 2s ²
Chlorine	
	1 30 30 1
	$1s^22s^22p^1$.
Calcium	
	2-2-6-2-4-2-3
	1s ² 2s ² 2n ⁶ 3s ² 3n ⁴ 4s ² 3d ⁹

Across	Down
3: A group of organic	1. C3H8
compounds, including sugars, starches and	2 electrons: Electrons in the
fiber, that is a major source of energy for	outermost shell.
animals.	4. Octet Rule - Elements want electrons
5. Group of nitrogenous organic compounds	in their outer shell (valence).
that are essential parts of living cells.	5. The number of valence electrons
6. All matter is composed of	determines the group placement of an
8. Chemical reactions occur when atoms are	element on the table.
·	7. Two or more atoms that join together
11. [He] 2s2 2p5	chemically.
12. Gilbert Newton (1875-1946)	9. C6H12O6
was an American physical chemist whose	10. John's Atomic Theories
concept of electron pairs led to modern	13 is an organic compound
theories of chemical bonding.	consisting entirely of hydrogen and carbon.
15. Named for their energy sublevels, there	14. Niels Henrik David was a Danish
are four types of: s, p, d, and f.	physicist who made foundational
16. Electron Model" - Austrian	contributions to understanding atomic
physicist Erwin Schrödinger (1887-1961) It	structure and quantum theory
consisted of a dense nucleus surrounded by	18. Compounds are formed from atoms of
a cloud of electrons at various levels in	the
orbitals.	19. All atoms of the same element are
17. Energy levels increase each p	
(Quantum)	20. Atoms cannot be made or
22. Pauli Principle: No two	"easily"
electrons in an atom can have identical	21. Different elements have types
quantum numbers	of atoms.
25. [Ar] 3d5 4s2	23. 1s22s22p1
26. C4H10	24. AMU Atomic Mass
28. Valence electrons are the highest energy	27. Electrons can get excited and enter a
electrons in an atom and are therefore the	energy state.
most r	
29. C2H6O	
30. Mostly carbon and hydrogen with a OH	
group	
teacher can remove word bar	nk to make more difficult

ALCOHOL, ATOMS, BOHR, BUTANE, CALCIUM, CARBOHYDRATE, CLOUD, DALTON, DESTROYED, DIFFERENT, EIGHT, ELEMENT, ETHANOL, EXCLUSION, FLUORINE, GLUCOSE, HIGHER, HYDROCARBON, IDENTICAL, LEWIS, MANGANESE, MOLECULE, PERIOD, PERIODIC, PROPANE, PROTEIN, REACTIVE, REARRANGED, UNITS, VALENCE, ORBITALS

Part 3 Review Game

Name: Due: Today

Score ____ / 100

REVIEW POWER	GET IN LINE	MALL LIKE YOU	SERIOUSLY!	CIRCUS CIRCUS Bonus round 1 pt each
1)	6)	11)	16)	*21)
2)	7)	12)	17)	*22)
3)	8)	13)	18)	*23)
4)	9)	14)	19)	*24)
5)	10)	15)	20)	*25)

Final Question Wager	<u>/5</u> Answer: _	
----------------------	---------------------	--

								- 1	Group →
		7	6	5	4	ω	2	_	roup -
		87 Fr	55 Cs	37 Rb	× 15	Na 11	□ 3	Ξ-	_
Actir	anthanides	Ra	56 Ba	Sr 38	20 Ca	12 Mg	4 Be	S	2
Actinides	nides			₹ 39	21 Sc			-	ω
89 Ac	57 La	104 RF	72 H	40 Zr	= 22				4
90 Th	69 Ce	105 Db	73 Ta	8 41	< 23		14		S
91 Pa	59 Pr	106 Sg	74 W	42 Mo	24 Cr		Ē	-	6
92 U	NA 00	107 Bh	75 Re	7.43	25 Mn	Ţ.	J		7
Np 93	61 Pm	108 Hs	76 Os	4	26 Fe			A.	00
94 Pu	82 Sm	109 Mt	77 Ir	과 45	27 Co	Ŀ	10	∞	9
95 Am	En 63	110 Ds	78 Pt	Pd 46	≥ 28				10
96 Cm	Gd Gd	111 Rg	79 Au	47 Ag	<u>د</u>	(ľ		=
97 Bk	42 59	112 UUb	퓽 80	8 B	30 Zn	li .			12
OH 98	66 Dy	113 Uut	⊐ 81	49 In	31 Ga	A 13	B 5		13
99 Es	67 Ho	114 Uuq	P 88	Sn 50	32 Ge	S 14	0 6		7
100 Fm	Er 68	115 Uup	₽ 83	Sb Sb	A 33	15 P	N 7		5
101 Md	69 Tm	116 Uuh	P ₀	52 Te	34	s 16	0 ∞		16
102 No	70 Yb	117 Uus	At 85	- s	Br 35	17 CI	т 9	Ξ	17
103 Lr	71 Lu	118 Uuo	86 Rn	×e 54	자 36	18 Ar	Ne Ne	2 He	78

_

Part 3 Work Bundle

Name: Due Date:

)ue	Da ⁻	te:						
* * Act	*Lanti	223	곡	francium 87	S)) 55	85.468	Rb	nubdum 37	39,098	_	potassium 19	22.990	Na	11	6.941		ω.	1,0079	I	-	hydrogen
**Actinide series	*Lanthanide series	226	Ra	88	ų Ба	56	87.62	Sr	38	40,078	Ca	20	24,305	Mg	12	9,0122	Be	4	bandlium			
eries	series		*	89-102	*	57-70																
Ac [227]	lantharum 57 La 138.91	202	5	lawrendum 103	174.97	7/	88.906	~	39	44.956	Sc	scandium 21										
1 horium 90 232.04	certum 58 Ce	[26]	갲	rutherfordiur 104	178.49	72	91.224	Zr	40	47.867	=!	titanium 22										
Pa 231.04	Passodymium 59 Pr 140,91	262	밁	dubnium 105	18.85 D	1 73	92,906	R	41	50,942	<	vanadium 23										
238.03		200	g	seaborgium 106	183.84	74	95.94	Mo	42	51.996	ರ	chromium 24										
Np 93 [237]	Pm	264	В	- 155	186.21	J	1	ਨ			M N		-									
Pu plulconium	Total Cal	269	SH	hassium 108	S Coet	76	101.07	Ru	44 44	55.845	Fe		1									
Am 95	europium 63	2008	×	meilneriur 109	192.22	77	102.91	꽁	45	58.933	င္ပ	oobalt 27										
Cm 96	9	2/1	Uun	_	30.2e1		1		_			nickel 28										
97 P. (247)	158.93	272		279.79	196.97		1	Ag		63,546	5 C	29 29										
	dysprosium 66 16250	211			200.59 D		112.41	Cd	48	65.39	Zn	Zinc 30										
einsteniu 99 ES	164.93				204.38		+				2555		26,982	≥	13	10.811	σ	5	tono			
T 100	erblum 68	289	Uuc	ununquadum	-		+			-			-		_	-		_	4			
Md		<u>L</u>	alasta.		9	2 8 8	1	100000110	3 200		-,-				- 1	,			7			
7 nobelium 192 193						2 E													7			
					210		+			+			1			+			1			
					. 7	1	15	_	*	00	_		33	_		×	_		4	_	io . 3	7

Part 3 Lesson 1

John Dalton's Atomic Theories

All matter is composed of atoms

Atoms cannot be created or destroyed

All atoms of the same element are identical

Different elements have different types of atoms

Chemical reactions occur when atoms are rearranged

Compounds are formed from atoms of the elements

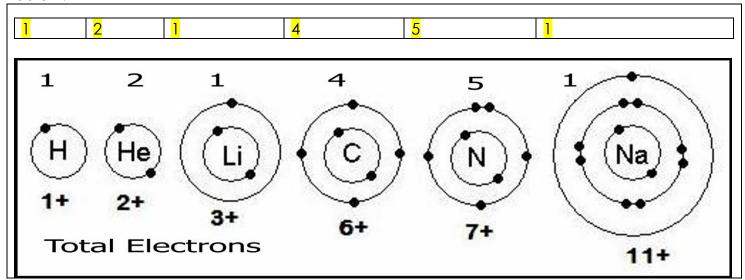
Please make some reference to John Daltons Atomic Assumptions in the space below.

From his experiments and observations, as well as the work from peers of his time, Dalton proposed a new theory of the atom. This later became known as Dalton's atomic theory. The general tenets of this theory were as follows:

- All matter is composed of extremely small particles called atoms.
- Atoms of a given element are identical in size, mass, and other properties. Atoms of different elements differ in size, mass, and other properties.
- Atoms cannot be subdivided, created, or destroyed.
- •Atoms of different elements can combine in simple whole number ratios to form chemical compounds.
- •In chemical reactions, atoms are combined, separated, or rearranged. Dalton's atomic theory has been largely accepted by the scientific community, with the exception of three changes. We know now that (1) an atom can be further sub-divided, (2) all atoms of an element are not identical in mass, and (3) using nuclear fission and fusion techniques, we can create or destroy atoms by changing them into other atoms.

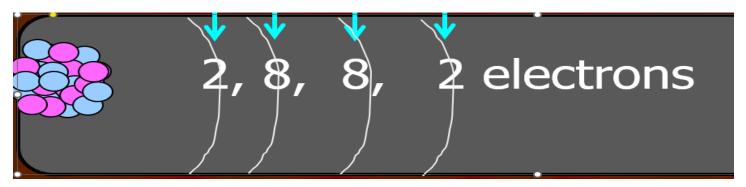
Which is not one of John Daltons Atomic Theories?

- A.) All matter is composed of atoms.
- B.) Atoms cannot be made or destroyed.
- C.) All atoms of the same element are different.
- D.) Different elements have different types of atoms.
- E.) Chemical reactions occur when atoms are rearranged.
- F.) Compounds are formed from atoms of the constituent elements.

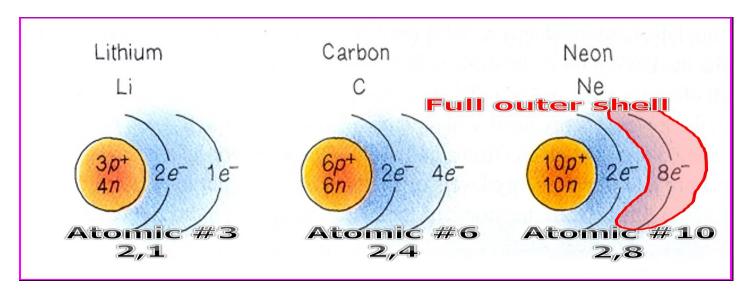

Which is not one of John Daltons Atomic Theories?

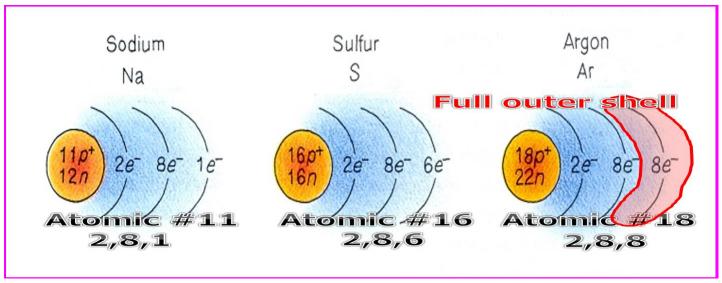
- A.) All matter is composed of atoms.
- B.) Atoms cannot be made or destroyed.
- C.) All atoms of the same element are identical.
- D.) Different elements have the same type of atoms.
- E.) Chemical reactions occur when atoms are rearranged.
- F.) Compounds are formed from atoms of the constituent elements.

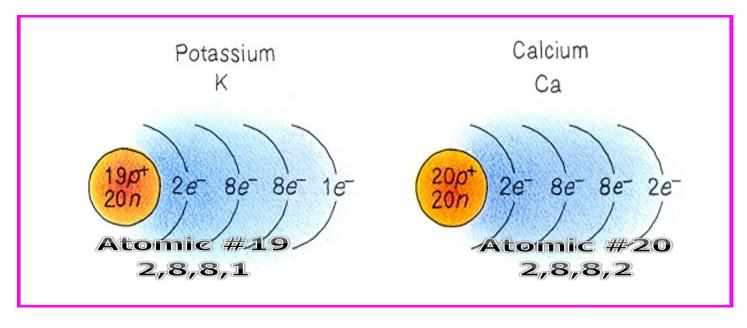
Atomic Mass = AMU Atomic Mass Units, The number of Protons, Neutrons, and Electrons.

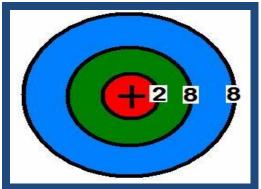

Valence electrons: Electrons in the outermost shell.

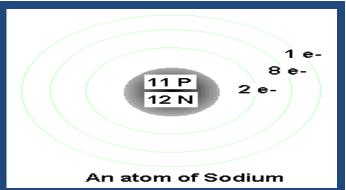
Please record in large bold numbers the number of <u>valence electrons</u> beneath the elements below.

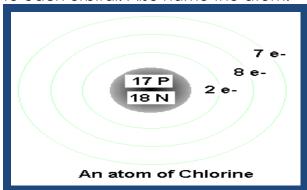


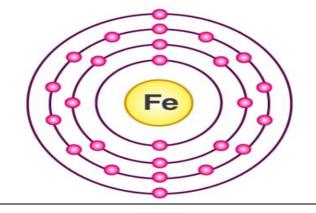

Part 3 Lesson 2 Electron Orbitals

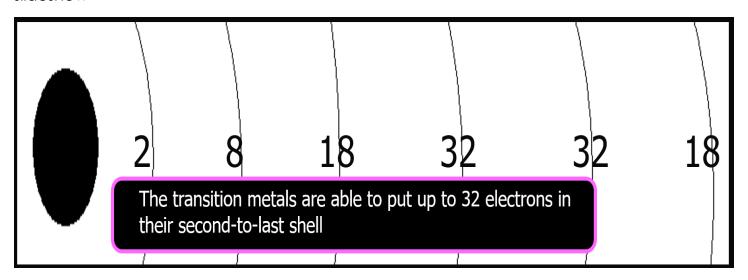

The number of valence electrons determines the group placement of an element on the periodic table.


Please add the correct number of electrons to each orbital as described in the slideshow.

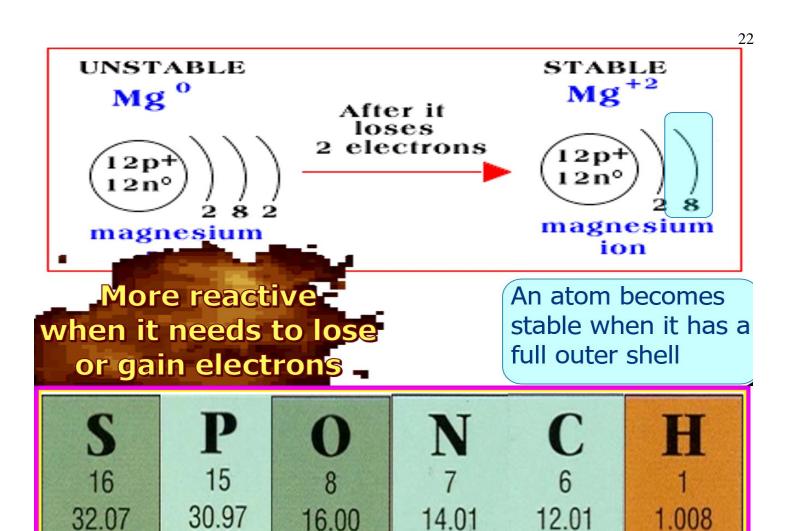



Please fill this atom with the most electrons possible. Also name the atom.


Please add the correct number of electrons to each orbital. Also name the atom.


Please add the correct number of electrons to each orbital. Also name the atom.

Please add the correct number of electrons to each orbital. Also name the atom.



Most of the transition metals...Record the number of electron in each orbit from the slideshow

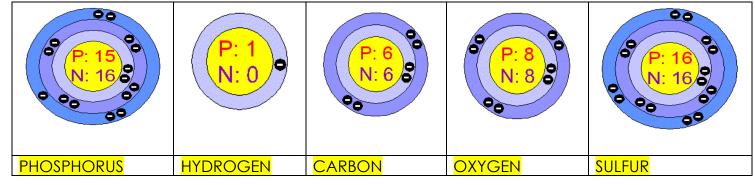
Part 3 Lesson 3 Lewis Dot Structures

 Valence electrons are the highest energy electrons in an atom and are therefore the most reactive.

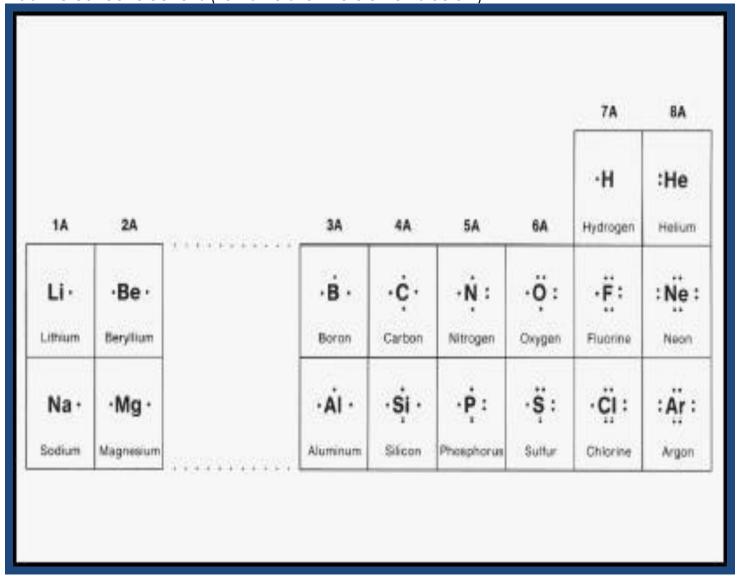
99% of life is made from these atoms

Nitrogen

Carbon


Hydrogen

Oxygen


Which element is below?

Sulfur

Phosphorus

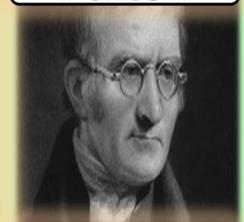
Octet Rule – Elements want <mark>8</mark> electrons in their outer shell (valence). Add the correct electrons (Lewis Dots for the elements below)

Molecule: Two or more atoms that join together chemically.

Make a Lewis Dot for the elements below as described in the slideshow.

Part 3 Lesson 4 Organic Molecules

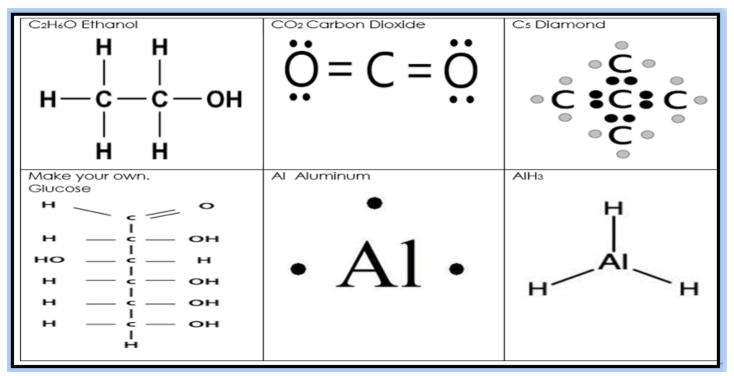
Please name and describe an important contribution of the chemists below?


Bohr proposed and of the atom in

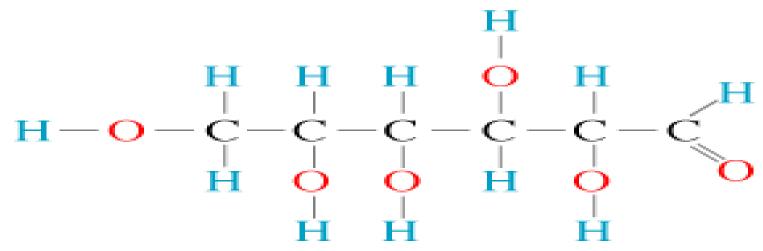
Niels Bohr proposed a model of the atom in which the electron was able to occupy only certain orbits around the nucleus. This atomic model was the first to use quantum theory, in that the electrons were limited to specific orbits around the nucleus. Bohr used his model to explain the spectral lines of hydrogen.

Gilbert Lewis

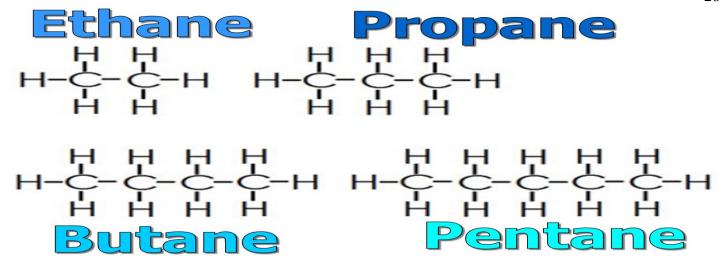

Gilbert Lewis was best known for his discovery of the covalent bond and his concept of electron pairs; his Lewis dot structures and other contributions to valence bond


John Dalton

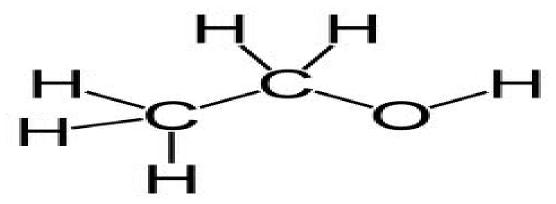
John Dalton (1766-1844) was an English chemist, physicist, and meteorologist, best known for introducing the atomic theory into chemistry


Please create a Lewis Electron Dot diagram for the following molecules in the boxes below

Carbohydrate: A group of organic compounds, including sugars, starches and fiber, that is a major source of energy for animals. Made of Carbon, Hydrogen, Oxygen (1:2:1)


Please complete a molecule of glucose C6H12O6

Part 3 Lesson 5 Organic Chemistry / Molecules Cont.


Hydrocarbon: An organic compound consisting entirely of Hydrogen and Carbon.

Which is butane C₄H₁₀? Which is pentane C₅H₁₂? Which is propane C₃H₈? What's left?


Alcohol: Mostly carbon and hydrogen with an OH group

Create Lewis Dot Structure and then build Ethanol C2H6O

Try and find the NH2 groups, and COOH group in the Amino Acid, Glutamine H2N-CO-(CH2)2-CH(NH2)-COOH

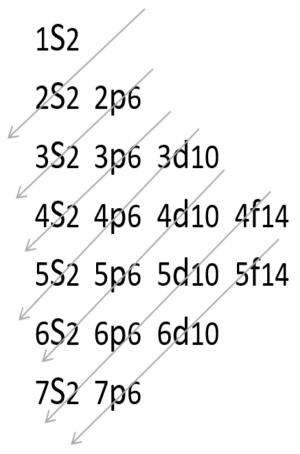
 Try and find the NH2 groups, and COOH group in the Amino Acid, Glutamine H2N-CO-(CH2)2-CH(NH2)-COOH

Part 3 Lesson 6 Electron Configurations

Heisenberg Uncertainty Principle

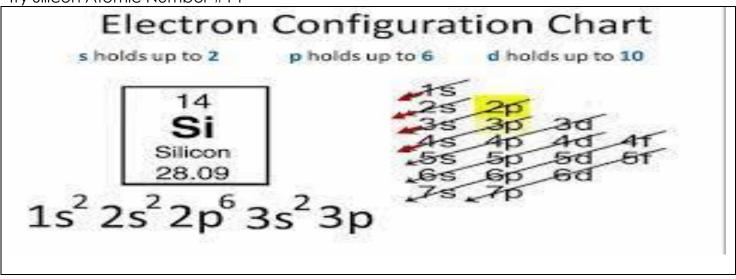
- You can't know with certainty both where an electron is and where it's going next.
- That makes it impossible to plot an orbit for an electron around a nucleus.

"Electron Cloud Model" Austrian physicist Erwin Schrödinger (1887-1961) It consisted of a dense nucleus surrounded by a cloud of electrons at various levels in orbitals.

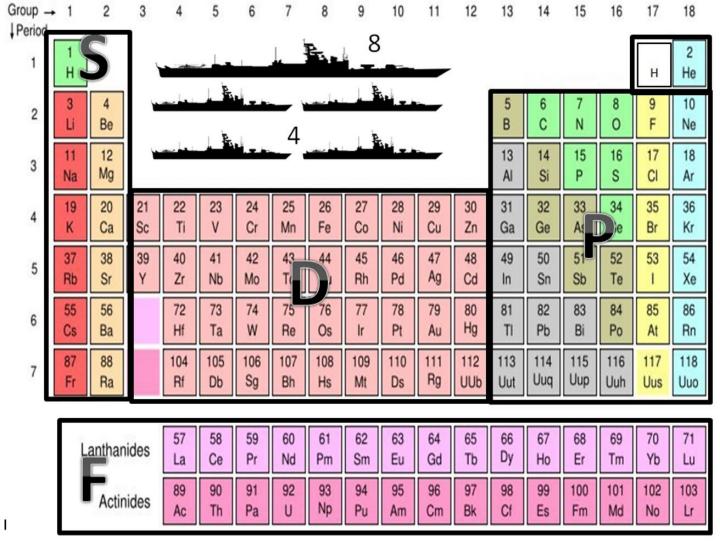

Energy levels increase each period (Quantum) Na Sodium has more energy than Lithium

Electrons can get excited and enter a higher energy state. (energy added).

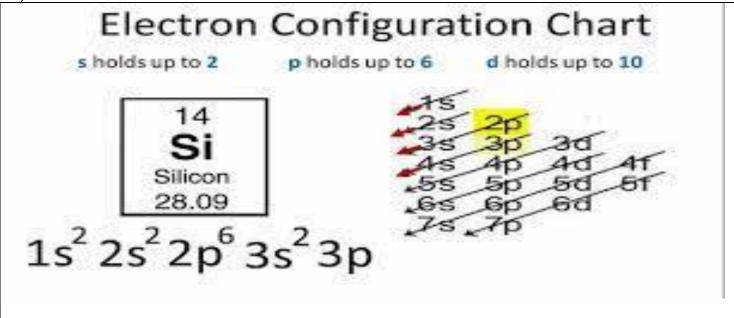
- As they get further from the nucleus, their force gets weaker and they can be removed more easily. (Next Part in the Unit, Atomic Bonding)
- Electrons can drop to a lower energy state (energy removed).


Fill up orbitals in the order 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p - until you run out of electrons

- -Energy increases as you move up the energy levels.
- -Pauli Exclusion Principle: No two electrons in an atom can have _____quantum numbers. Different spins


Electrons fill low energy orbitals (closer to the nucleus) before they fill higher energy ones. The 4f orbitals don't fill until after the 6s.

Try Silicon Atomic Number #14


Try Iodine Atomic Number #53

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p5

Aufbau principle: Electrons enter the lowest energy first

Try Silicon Atomic Number #14

Try Magnesium

1s²2s²2p⁶3s²

Try Argon

1s²2s²2p⁶3s²3p⁶

Try Krypton

[Ar] 3d¹⁰ 4s² 4p⁶

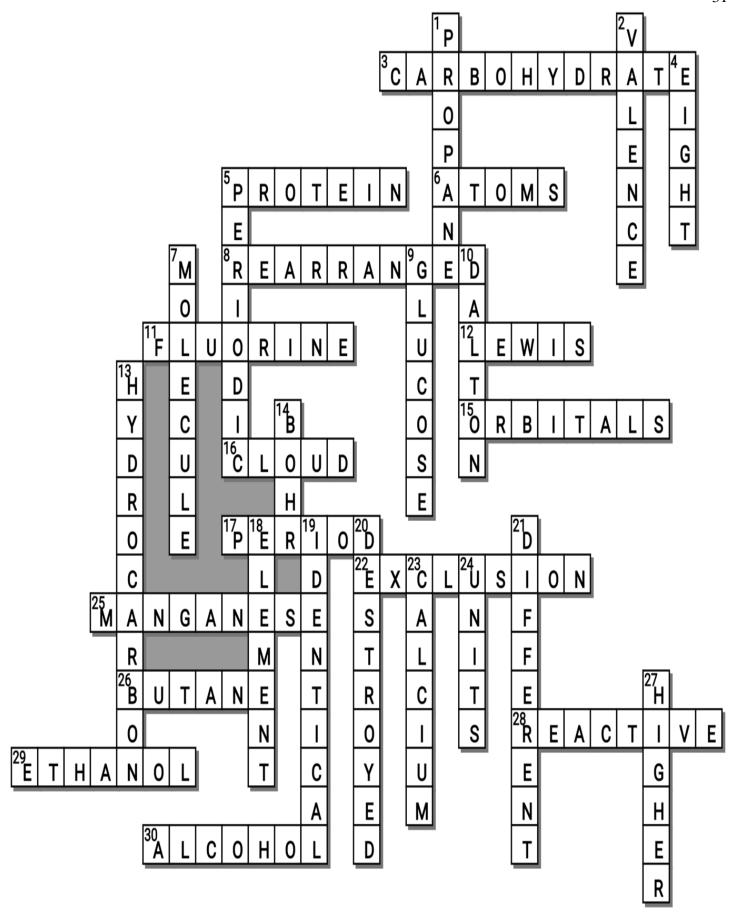
Try Potassium

1s²2s²2p⁶3s²3p⁶4s¹

Try Aluminum

1s²2s²2p⁶3s²3p¹

Try Gold


1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶ 5d¹⁰ 6s¹.

Quantum theory is the theoretical basis of modern physics that explains the nature and behavior of matter and energy on the atomic and subatomic level.

The energy in quantized. Valence electrons are the highest energy electrons in an atom and are therefore the most reactive.

What are the electron configurations for the following elements?

What are the elec	ctron configurations for the following elements?
Nitrogen	1s ² 2s ² 2p ³
Calcium	1s ² 2s ² 2p ¹ .
Arsenic	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p
Lead (Short)	[Xe] 6s ² 4f ¹⁴ 5d ¹⁰ 6p ²
Beryllium	1s ² 2s ²
Chlorine	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵
Aluminum	1s ² 2s ² 2p ¹ .
Calcium	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ²
Chromium	$1s^22s^22p^63s^23p^44s^23d^9$.

Across	Down
3: A group of organic	1. C3H8
compounds, including sugars, starches and	2 electrons: Electrons in the
fiber, that is a major source of energy for	outermost shell.
animals.	4. Octet Rule - Elements want electrons
5. Group of nitrogenous organic compounds	in their outer shell (valence).
that are essential parts of living cells.	5. The number of valence electrons
6. All matter is composed of	determines the group placement of an
8. Chemical reactions occur when atoms are	element on the table.
·	7. Two or more atoms that join together
11. [He] 2s2 2p5	chemically.
12. Gilbert Newton (1875-1946)	9. C6H12O6
was an American physical chemist whose	10. John's Atomic Theories
concept of electron pairs led to modern	13 is an organic compound
theories of chemical bonding.	consisting entirely of hydrogen and carbon.
15. Named for their energy sublevels, there	14. Niels Henrik David was a Danish
are four types of: s, p, d, and f.	physicist who made foundational
16. Electron Model" – Austrian	contributions to understanding atomic
physicist Erwin Schrödinger (1887-1961) It	structure and quantum theory
consisted of a dense nucleus surrounded by	18. Compounds are formed from atoms of
a cloud of electrons at various levels in	the
orbitals.	19. All atoms of the same element are
17. Energy levels increase each p	
(Quantum)	20. Atoms cannot be made or
22. Pauli Principle: No two	"easily"
electrons in an atom can have identical	21. Different elements have types
quantum numbers	of atoms.
25. [Ar] 3d5 4s2	23. 1s22s22p1
26. C4H10	24. AMU Atomic Mass
28. Valence electrons are the highest energy	27. Electrons can get excited and enter a
electrons in an atom and are therefore the	energy state.
most r	
29. C2H6O	
30. Mostly carbon and hydrogen with a OH	
group	
teacher can remove word bar	
ALCOHOL, ATOMS, BOHR, BUTANE, CALCIUM, C	CARBOHYDRATE, CLOUD, DALTON, DESTROYED,

ALCOHOL, ATOMS, BOHR, BUTANE, CALCIUM, CARBOHYDRATE, CLOUD, DALTON, DESTROYED DIFFERENT, EIGHT, ELEMENT, ETHANOL, EXCLUSION, FLUORINE, GLUCOSE, HIGHER, HYDROCARBON, IDENTICAL, LEWIS, MANGANESE, MOLECULE, PERIOD, PERIODIC, PROPANE, PROTEIN, REACTIVE, REARRANGED, UNITS, VALENCE, ORBITALS

Part 3 Review Game

Name:
Due: Today
Score ____ / 100

REVIEW POWER	GET IN LINE	MALL LIKE YOU	SERIOUSLY!	CIRCUS CIRCUS Bonus round
.1) D.) Different elements have different types of atoms.	6) SPONCH Elements	11) Carbohydrate	16) C.) Pauli Exclusion Principle	*21) A Bugs Life
2) Protons and Electrons	7) Letter B 8	12) Hydrocarbon	17) Double Bond	*22) Pennywise Or Bozoo
3) Atomic Mass Units	8) Molecule	13) Letter C is Ethanol	18) 1S ₂ , 2S ₂ , 2P ₅ , or [He] 2S ₂ 2P ₅	*23) Uncle Buck
4) The Element Silicon	9) <mark>СзН8</mark>	14) Amino Acid	19) 1s2 2s2 2p6 3s2 3p3 or [Ne] 3s2 3p3	*24) BIG
5) 2, 8, 7 Electrons	H—C—H	15) Glucose	A=Gilbert Lewis B=Niels Bohr C=John Dalton +1 Austrian physicist Erwin Schrödinger	*25) DUMBO

		7	თ	S	4	ω	2	_	Group -
		87 Fr	S 55	37 Rb	× 15	Na 11	<u></u> 3	Ξ -	_
Actir	anthanides	Ra	56 Ba	Sr 38	20 Ca	12 Mg	4 Be		2
Actinides	ides			∀ 39	21 Sc	•	f		ω
89 Ac	57 La	104 R#	72 H	40 Zr	= 22		-		4
90 Th	Ce C8	105 Db	73 Ta	8 41	< 23		12	-	S
91 Pa	59 Pr	106 Sg	74 W	42 Mo	24 Cr	F		-	თ
92	N 60	107 Bh	75 Re	7 5	25 Mn	Ţ.	J		7
Np 93	61 Pm	108 Hs	76 Os	4	26 Fe	-	-	-11	00
94 Pu	62 Sm	109 Mt	77	R 45	27	Ŀ	P	× ×	9
95 Am	<u>п</u> 83	110 Ds	78 Pt	Pd 46	≥ 28	Ē			10
96 Cm	64 64	111 Rg	79 Au	47 Ag	29 Cu	[Ţ		=
97 Bk	ъ 8	112 UUb	80 Hg	& B	30 Zn				12
C4 98	Dy Dy	113 Uut	⊒ 81	49 In	31 Ga	13 Al	B 5		3
99 Es	67 Ho	114 Uuq	P ₆ 82	Sn Sn	32 Ge	Si 14	0		7
100 Fm	е 8	115 Uup	B 8	Sb 51	A 33	15 P	N 7		5
101 Md	m 69	116 Uuh	P ₀	52 Te	34	16 S	0 &		16
102 No	70	117 Uus	≥ 85	- 53	Br 35	17 CI	F 9	Н	17
103 Lr	71 Lu	118 Uuo	R _n 86	×e 54	Xr 36	18 Ar	Ne 10	2 He	8

_