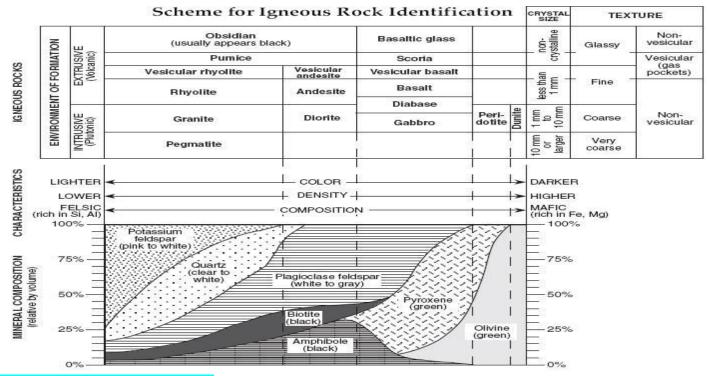
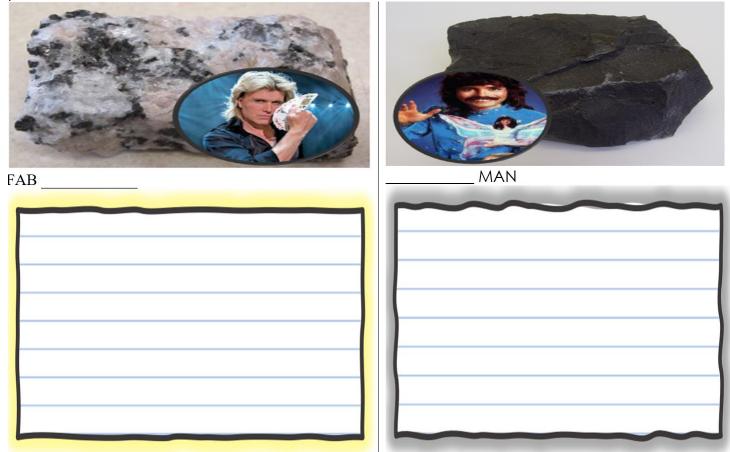

Part 5 Rocks

Name:


Part 5 Lesson 1 Rock Cycle
The rock cycle – How one rocks _____ into another. (plate tectonics) Driven by _ Copyright © 2010 Ryan P. Murphy

	-
All rocks start off as this type of rock.	
Describe how a rock becomes sedimentary in a few steps?	
How does a rock become metamorphic?	
How could a metamorphic rock become sedimentary?	
Which side (Right or Left) occurs above the earth's surface and which side occurs deeper in the crust?	
Can a metamorphic rock become another metamorphic rock? How would this happen?	
Does the rock cycle ever stop?	


Word Bank: Magma, Igneous, Sediments, Sedimentary Rock, Metamorphic Rock, Heat and Pressure x 2, Melting x 2, Compaction and Cementation, Weathering and Lithification x 2, Cooling

Use the scheme for Igneous Rock Identification to describe **Granite** and a very dark piece of **Basalt** on the next two pages.

Part 5 Lesson 2 Igneous Rocks

Please use the scheme for Igneous Rock Identification to describe Granite and a very dark piece of Basalt.

Igneous Rocks: Molten	Earth		
Intru	sive – Cooled	crust (slow)	
	crystals	. ,	
Extru	usive – Cooled on Earth's	s surface ().	
		stals or no crystals.	
Igneous rocks		,	
-Mafic (in c	color) is used for silicate r	minerals, magmas, and	rocks which are
•	elements. (Mag	<u> </u>	
. •	color) is used for silicate i	•	rocks which have a
•	e of theelem	•	
	. (Silicon and oxygen, a		n) Feldspar
Classification of langua	us Do oks	·	, .
Classification of Igneou			
	- Dark, heavy (dense), Ir		
	 Light colored, less heav 	ry, filled with oxygen	
	- Between the two		
Quiz 1-10, Is it Basaltic,	Granitic or Name the Ro	ock Band.	
1)	2)	3)	4)
5)	6)	7)	8)
9)	10)	*11)	

Part 5 Lesson 3 Igneous Rocks Cont.

Name the Igneous Rocks Below

Name=

A vesicular rock cooled extrusive, non-crystalline, composed of mainly of scoria, low density. Can float

Name=

A non-vesicular rock cooled extrusive, fine-grained crystals less than 1 mm, dark color and high density

Name=

A non-vesicular rock cooled intrusive, coarse-grained crystals 1-10mm, more mafic, high density, and darker color (has peridotite). Find...


Name=

A non-vesicular rock cooled extrusive, fine-grained crystals less than 1 mm, intermediate color and density. Between felsic and mafic

Name=

Non-vesicular basaltic glassy rock, cooled extrusive, extremely felsic, non-crystalline. Volcanic glass.

Name=

A non-vesicular rock cooled intrusive, coarse-grained crystals 1-10mm, more felsic, lower density, and lighter color. Quartz and feldspar minerals, and hornblende-type amphiboles biotite mica

Name= Felsic, cooled intrusively (Plutonic), very coarse with large crystals larger than 10mm, non-vesicular

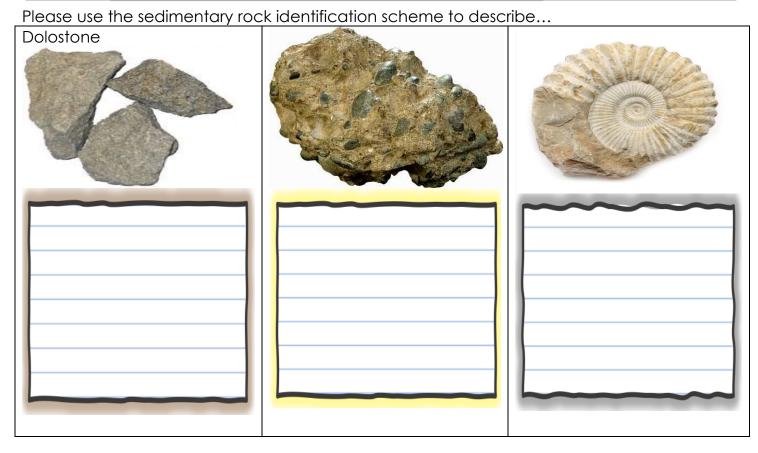
Describe <u>Dunite</u>	Describe Rhyolite

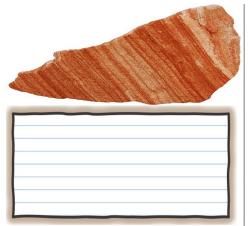
Part 5 Lesson 4 Igneous Rocks and Flow Chart – Flow Chart Next Page

Common Igneous Rocks – Record some notes if you need

Sedimentary Rocks Part 5 Lesson 5 Sedimentary Rocks

Sedimentary rocks are a type of rock that is formed near _____ from the of sediments and other processes.


Sedimentary Rocks are formed when ______ of rock are loosened by ______. The rock is then ______ to a basin or depression where the small sediment is trapped. The sediment eventually gets _____, gets _____ and _____ together. _____ sedimentary rocks have particles ranging in size from microscopic clay to large boulders.


Word bank: Transport, Weathering and Erosion, Burial –Compression, Compaction and Lithification, Deposition

6 Part 5 Lesson 4 Rocks Flow Chart

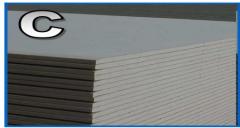
Part 5 Lesson 5 Sedimentary Ro	cks-Continued		7
Sedimentary rocks are usually_	a	nd are the only	type of rocks that contain
Road Cut sketch Part 5 Lesson 6 Common Sedim		ind dre me omy	Type of focks mar confain
Which is a bogus statement about see from the list below? A.) Sediments are gathered from coofforms crystals very quickly. B.) Caused by weathering, erosion, and C.) Usually layered D.) Layers can be fossils and old living. The size of the sediment classifications.	edimentary rocks bling lava that and deposition. g materials. es the type of se	from the list below A.) Sediments are and deposition. B.) Caused by we C.) Usually layered D.) Layers can be edimentary rock	gathered from erosion, transport athering, erosion, and deposition. d. fossils and old living materials.
Formed from	are very small p	ieces of sedime	nt. cipitation of minerals in water.
Clastic Sedimentary Rocks	Crystalline (forr evaporation) S Rocks		Bioclastic . Organic Sedimentary Rocks

	INORG	ANIC LAND-DERIV	ED SEDIMENTARY R	ocks	
TEXTURE	GRAIN SIZE	COMPOSITION	COMMENTS	ROCK NAME	MAP SYMBOL
	Pebbles, cobbles, and/or boulders		Rounded fragments	Conglomerate	000 20 2 000 20 2
	embedded in sand, silt, and/or clay	Mostly quartz, — feldspar, and —	Angular fragments	Breccia	Д. Ф. Н. Д. В. В.
Clastic (fragmental)	Sand (0.006 to 0.2 cm)	clay minerals; may contain	Fine to coarse	Sandstone	
	Silt (0.0004 to 0.006 cm)	fragments of other rocks	Very fine grain	Siltstone	
	Clay (less than 0.0004 cm)	and minerals	Compact; may split easily	Shale	
	CHEMICALLY AN	D/OR ORGANICAL	LY FORMED SEDIME	NTARY ROCKS	
TEXTURE	GRAIN SIZE	COMPOSITION	COMMENTS	ROCK NAME	MAPSYMBOL
	Fine	Halite	Crystals from	Rock salt	
Crystalline	to coarse crystals —	Gypsum	chemical precipitates	Rock gypsum	
	crystals	Dolomite	and evaporites	Dolostone	
Crystalline or bioclastic	Microscopic to	Calcite	Precipitates of biologic origin or cemented shell fragments	Limestone	
Bioclastic	very coarse	Carbon	Compacted plant remains	Bituminous coal	

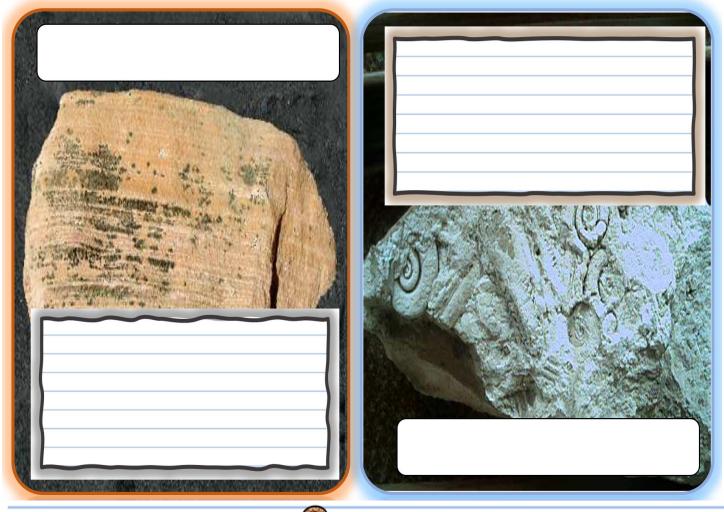
Name this Sedimentary Rock. Bioclastic texture, Composition is entirely carbon, compacted plant remains

Name this Sedimentary Rock. Clastic Fragmental texture, composed of cobble, pebbles and boulder, embedded in clay or sand, Mostly Quartz and Feldspar, Angular Fragments

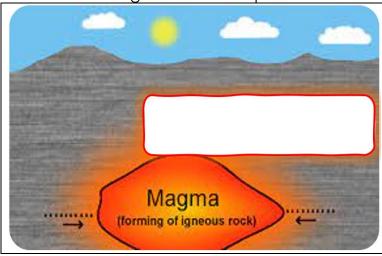
Which is clastic, crystalline, and bioclastic/organic? Also try and name the sedimentary rock?

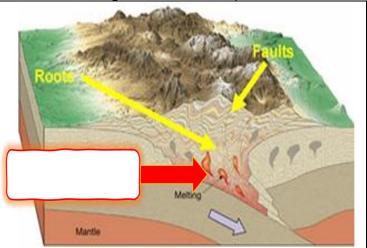


Which is clastic, crystalline, and bioclastic/organic? Also try and name the sedimentary rock?


Which is clastic, crystalline, and bioclastic/organic? Also try and name the sedimentary rock?

Please name three things about these two sedimentary rocks and name them?




Common Sedimentary Rocks

Part 5 Lesson 7 Metamorphic Rocks

Metamorphic – Rock that changed forms due to extreme t_____ and pr_____

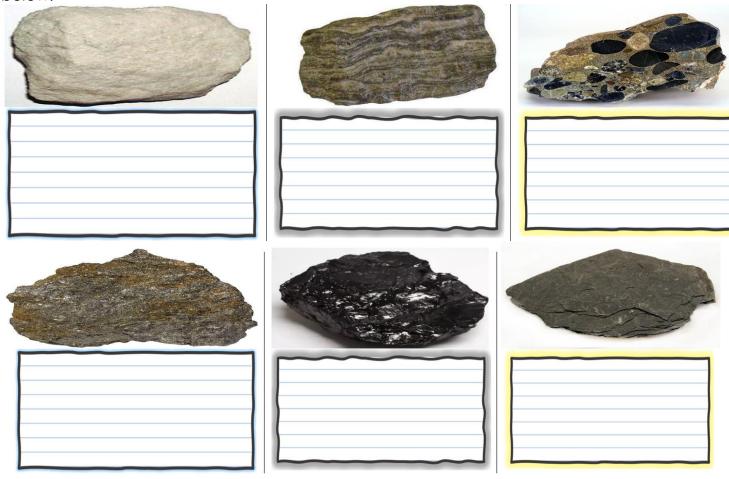
Which one is Regional Metamorphism? And which is Contact Regional Metamorphism?

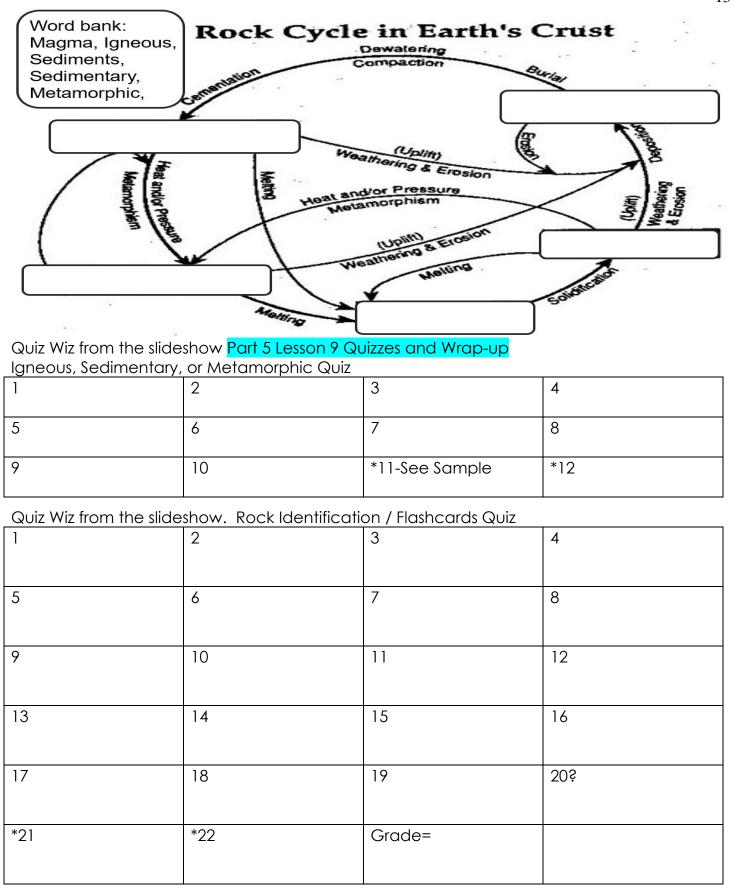
Metamorphic rock can be divided into two categories.

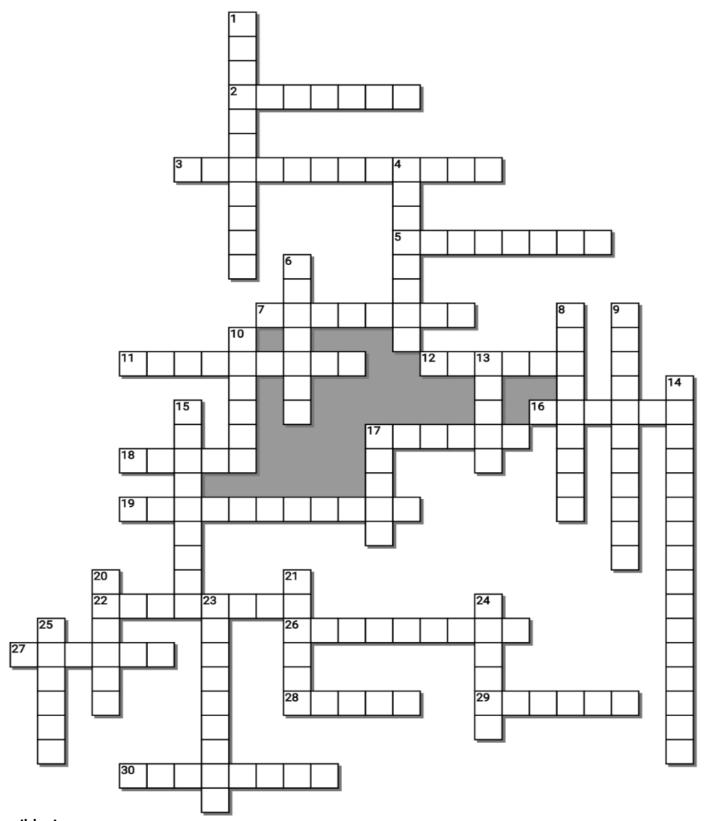
Foliated: _____ layers Non-foliated: _____ Banded

Foliated: (Metamorphic)
formed within the Earth's
interior under extremely high
______. These pressures
are often unequal with greater
pressure in one _____
than in the others. This causes
the minerals in the rock to
reorient themselves to the
______ pressure
direction. This gives the foliated
metamorphic rock a
_____ look.

Name the metamorphic rock? Is it foliated on non-foliated?


Part 5 Lesson 8 Common Metamorphic Rocks


Common Metamorphic Roc^{ks}


Scheme for Metamorphic Rock Identification

TE	XTURE	GRAIN SIZE	COMPOSITION	TYPE OF METAMORPHISM	COMMENTS	ROCK NAME	MAP SYMBOL
Q	F	Fine		Regional	Low-grade metamorphism of shale	Slate	
FOLIATED	MINERAL	Fine to		(Heat and pressure increases)	Foliation surfaces shiny from microscopic mica crystals	Phyllite	
Stores	≥IA	medium	MICA QUARTZ FELDSPAR AMPHIBOLE GARNET	200	Platy mica crystals visible from metamorphism of clay or feldspars	Schist	
	BAND- ING	Medium to coarse	QUA FELDS AMPHII GARN	Ţ	High-grade metamorphism; mineral types segregated into bands	Gneiss	
		Fine	Carbon	Regional	Metamorphism of bituminous coal	Anthracite coal	
	ED	Fine	Various minerals	Contact (heat)	Various rocks changed by heat from nearby magma/lava	Hornfels	× × × + + + + + + + + + + + + + + + + +
	NONFOLIATED	Fine	Quartz		Metamorphism of quartz sandstone	Quartzite	
	8	to coarse	Calcite and/or dolomite	Regional or contact	Metamorphism of limestone or dolostone	Marble	
		Coarse	Various minerals		Pebbles may be distorted or stretched	Metaconglomerate	

 \Diamond Use the Metamorphic identification Scheme to describe the three metamorphic rocks below.

Possible Answers

ANDESITE, BASALT, BASALT, BASALTIC, CONGLOMERATE, CONTINENTAL, CYCLE, EXTRUSIVE, FELSIC, GABBRO, GABBRO, GNEISS, GRANITE, GRANITIC, IGNEOUS, INTRUSIVE, LIMESTONE, MAFIC, MARBLE, METACONGLOMERATE, METAMORPHIC, OBSIDIAN, PUMICE, PUMICE, QUARTZITE, RHYOLITE, SANDSTONE, SCHIST, SEDIMENTARY, SHALE, SLATE

Across Rocks: Molten Earth cooled Sedimentary Rock: It's a fragmental clastic sedimentary rock. Pebbles, cobbles and embedded in silt, sand and clay where they are cemented together. 5. Non-vesicular basaltic glassy rock, cooled extrusive, extremely felsic, non-crystalline. Volcanic glass. 7. A classification of Igneous Rock: B_____ Dark, heavy (dense), Iron 11. Igneous Rock: E_____ - Cooled on Earth's surface (Faster). Fine grain crystals or no crystals. 12. Igneous Rock: Igneous Rock - Dark Colored. Extrusive with fine grain crystals. Forms from cooled lava. Igneous Rock –Can sometimes float! Extrusive, A light-colored rock. It forms through very rapid cooling. 17. Metamorphic Rock: It's nonfoliated. It has coarse to fine crystals and occurs from the metamorphism of limestone or dolostone. Metamorphic – Foliated, is fine-grained. Formed from shale and used for roofing and flooring. 19. A Rock that changed forms due to extreme temperature and pressure A non-vesicular rock cooled extrusive, fine grained crystals less than 1 mm, intermediate color and density. Between felsic and mafic 26. Sedimentary Rock: It is a crystalline or bioclastic rock made from the remains of shelled creatures that have been cemented together. The mineral that makes it is calcite Igneous Rock – Intrusive, Coarse-grained, dark-colored. It is usually black or dark green in color. It is the most abundant rock in the deep oceanic crust. 28. The rock _____ - How one rocks changes into another. 29. Metamorphic – Foliated, It often contains

significant amounts of mica

with oxygen

A classification of Igneous Rock:

G_____ Light colored, less heavy, filled

Down

- Type of Rock where Sediments are compacted and cemented together
 Igneous Rock – Extrusive, a light-colored, fine-grained rock that typically contains quartz and feldspar minerals.
- 6. A non-vesicular rock cooled intrusive, coarse grained crystals 1-10mm, more felsic, lower density, and lighter color. Quartz and feldspar minerals, and hornblende-type amphiboles biotite mica
- 8. Igneous Rock: I_____ Cooled below crust (slow)
- The Rock Cycle is Driven by _____ drift (plate tectonics)
- A vesicular rock cooled extrusive, non-crystalline, composed of mainly of scoria, low density. Can float
- 13. Sedimentary, A fine-grained rock that forms from the compaction of silt and clay-size mineral particles

 "Mud"
- 14. A nonfoliated metamorphic rock with many stretched or distorted pebbles inside.
- 15. Metamorphic, Non-foliated rock that is produced by the metamorphism of sandstone. It is composed primarily of quartz.
- 17. M_____ Rock (Darker in color) is used for silicate minerals, magmas, and rocks which are relatively high in the heavier elements. (Magnesium and Iron)
- 20. A non-vesicular rock cooled intrusive, coarse grained crystals 1-10mm, more mafic, high density, and darker color (has peridotite). Find...
- 21. F_____ Rock (Lighter in color) is used for silicate minerals, magmas, and rocks which have a lower percentage of the heavier elements. Have more of the lighter elements. (Silicon and oxygen, aluminum, and potassium) Feldspar
- 23. Sedimentary, clastic rock made up mainly of sand. Found in environments where large amounts of sand can accumulate.
- 24. Metamorphic Rock: It's foliated and has medium to coarse crystals. Shale-> Slate-> Schist-> to
- 25. A non-vesicular rock cooled extrusive, fine grained crystals less than 1 mm, dark color and high density

Part 5 Rocks Review Game

1-20 = 5 pts

Part 5 Lesson 11

Score	/ 100

Name:

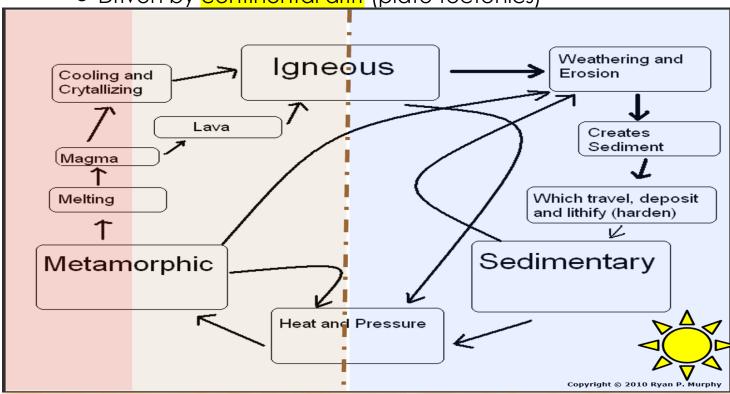
*20-*25 * = Bonus + 1 pt,

(Secretly write owl in correct space +1 pt)

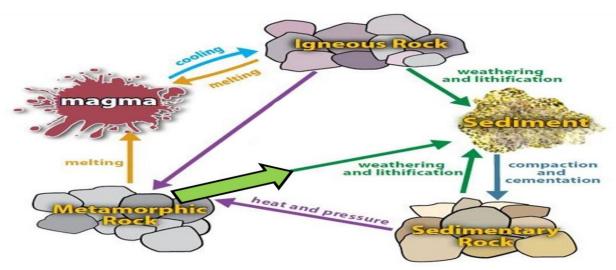
Final Question = 5 pt wager

AROUND AND AROUND	MOLTEN HOT	SEDIMENTARY THOUGHT	CHANGING FORMS	FAMOUS ROCKS Bonus round 1 pt each
1)	6)	11)	16)	*21)
2)	7)	12)	17)	*22)
3)	8)	13)	18)	*23)
4)	9)	14)	19)	*24)
5)	10)	15)	20)	*25)

Final	Qυ	es	ioi	٦ V	۷a	ge	er			_/	5	Α	'n	S۷	ve	er																											
							-			-					-		 	-	 -		 -							-		 -	-		-			-		-	 -			-	 -
		-				_		-	_			_	_	_		_	_		 _	_		_	_	-	_	_	_	_	_	 _	_	_	_	-	_		-	-		-	_	_	 _

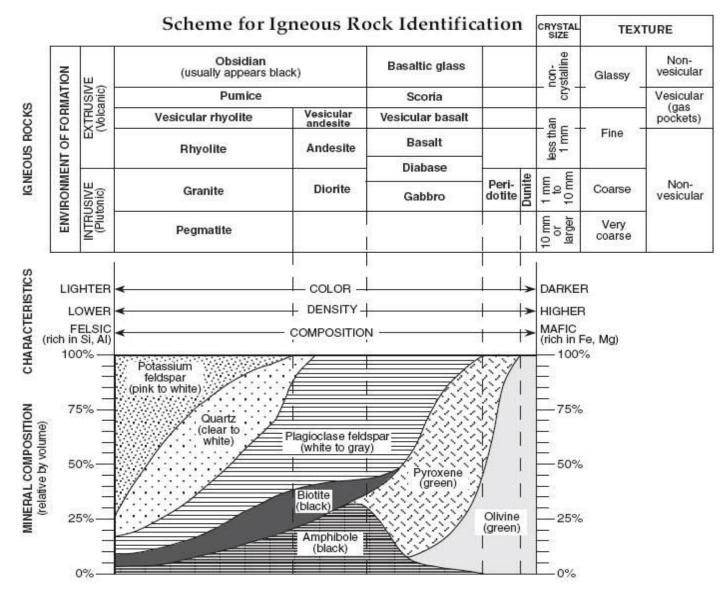

Part 5 Rocks

Name:

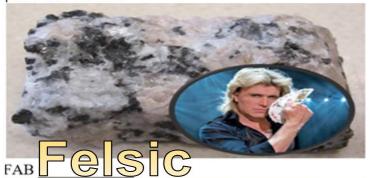

Part 5 Lesson 1 Rock Cycle

The rock cycle – How one rocks changes into another.

Driven by continental drift (plate tectonics)



All rocks start off as this type of rock.	All rocks start off as Igneous Rocks. Igneous means formed from magma. The magma will cool and crystalize to form Igneous Rocks
Describe how a rock becomes sedimentary in a few steps?	A rock get weathered and eroded and turned into sediment. This sediment often travels and is deposited into a new location. The sediment hardens to become a sedimentary rock.
How does a rock become metamorphic?	A rock can become a metamorphic rock through heat and pressure, and hot mineral fluids from the earth.
How could a metamorphic rock become sedimentary?	The metamorphic rock at the surface will become weathered into sediments. These sediments will compact, harden, and lithify into a sedimentary rock.
Which side (Right or Left) occurs above the earth's surface and which side occurs deeper in the crust?	The right side shows that sedimentary rocks are created near the surface, cooling lava at the surface can also create igneous rocks. Metamorphic rocks are often formed deep underground.
Can a metamorphic rock become another metamorphic rock? How would this happen?	Yes, through heat pressure a metamorphic rock can become a different metamorphic rock.
Does the rock cycle ever stop?	No, the Rock Cycle never stops. It's a never-ending process where rocks are recycled and created.


Word Bank: Magma, Igneous, Sediments, Sedimentary Rock, Metamorphic Rock, Heat and Pressure x 2, Melting x 2, Gompaction and Comentation, Weathering and Lithification x 2, Gooling

Use the scheme for Igneous Rock Identification to describe **Granite** and a very dark piece of **Basalt** on the next two pages.

Part 5 Lesson 2 Igneous Rocks

Please use the scheme for Igneous Rock Identification to describe Granite and a very dark piece of Basalt.

This is granite. Granite is cooled intrusive deep inside the earth. It has coarse texture and large crystals. Granite is non-vesicular. It is felsic, containing lighter elements such as Silicon, Aluminum, and Oxygen. The minerals that make up Granite are Quartz, Feldspar, and Mica.

This is basalt. It is fine grained because it cooled extrusive at or near the earths surface. It has small crystals and mafic in nature. It contains heavier elements such as Magnesium and Iron. This contains the minerals feldspar, pyroxene, and Amphibole.

Igneous Rocks: Molten Earth cooled

- Intrusive Cooled below crust (slow)
 - Large crystals
- Extrusive Cooled on Earth's surface (Faster).
 - Fine grain crystals or no crystals.
- Igneous rocks
 - Mafic (Darker in color) is used for silicate minerals, magmas, and rocks which are relatively high in the heavier elements. (Magnesium and Iron)
 - Felsic (Lighter in color) is used for silicate minerals, magmas, and rocks which have a lower percentage of the heavier elements. Have more of the lighter elements. (Silicon and oxygen, aluminum, and potassium) Feldspar

Classification of Igneous Rocks

Basaltic – Dark, heavy (dense), Iron

Grantitic – Light colored, less heavy, filled with oxygen

Andesitic – Between the two

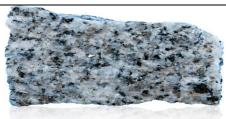
Part 5 Lesson 3 Igneous Rocks

Name the Igneous Rocks Below

Name= Pumice
A vesicular rock cooled
extrusive, non-crystalline,
composed of mainly of
scoria, low density. Can
float

Name=BASALT
A non-vesicular rock
cooled extrusive, fine
grained crystals less than
1 mm, dark color and
high density

Name=GABBRO
A non-vesicular rock
cooled intrusive, coarse
grained crystals 1-10mm,
more mafic, high density,
and darker color (has
peridotite). Find...



Name= ANDESITE
A non-vesicular rock
cooled extrusive, fine
grained crystals less than
1 mm, intermediate color
and density. Between
felsic and mafic

Name= OBSIDIAN

Non-vesicular basaltic
glassy rock, cooled
extrusive, extremely felsic,
non-crystalline. Volcanic
glass.

Name= **GRANITE**A non-vesicular rock cooled intrusive, coarse grained crystals 1-10mm, more felsic, lower density, and lighter color. Quartz and feldspar minerals, and hornblende-type amphiboles biotite mica

Name=
Felsic, cooled intrusively
(Plutonic), very coarse with
large crystals larger than
10mm, non-vesicular

Diorite

Describe Dunite

Dunite is an intrusive Igneous rock that is coarse grained. It is mafic and rich in Iron and Magnesium, and mostly made of olivine. It is non-vesicular.

Describe Rhyolite

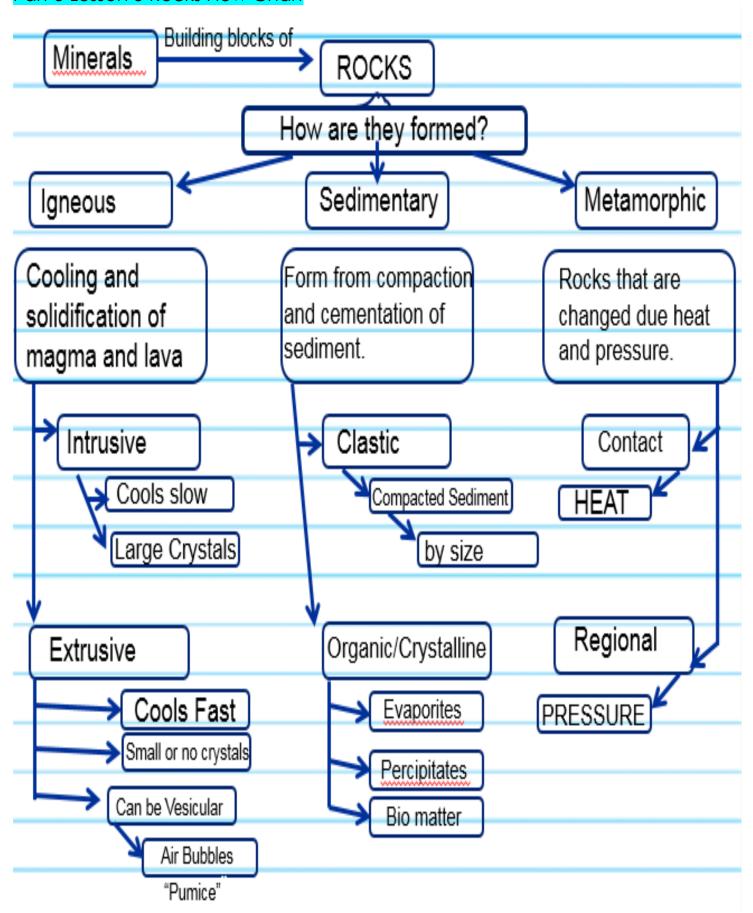
Rhyolite is an extrusive igneous rock which is non-vesicular and has fine grained crystals. It is felsic in nature with lighter colors and elements.

Part 5 Lesson 4 Igneous Rocks

Common Igneous Rocks

Granite is Igneous Rock types include Quartz and feldspar

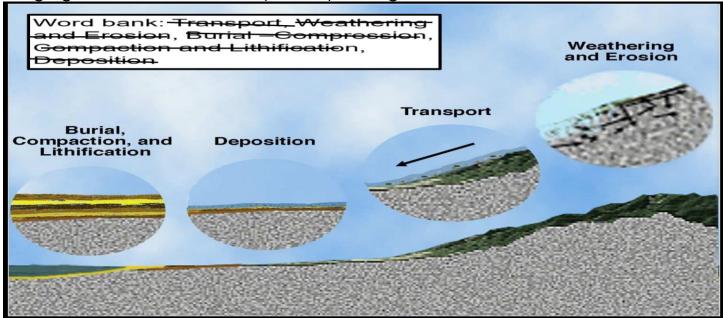
Basalt


Obsidian – Glassy

Gabbro

Rhyolite

	INORG	ANIC LAND-DERIV	ED SEDIMENTARY R	OCKS	
TEXTURE	GRAIN SIZE	COMPOSITION	COMMENTS	ROCK NAME	MAP SYMBOL
	Pebbles, cobbles, and/or boulders		Rounded fragments	Conglomerate	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	embedded in sand, silt, and/or clay	Mostly quartz,	Angular fragments	Breccia	Д Ф. В.
Clastic (fragmental)	Sand (0.006 to 0.2 cm)	feldspar, and clay minerals; may contain	Fine to coarse	Sandstone	
	Silt (0.0004 to 0.006 cm)	fragments of other rocks	Very fine grain	Siltstone	
	Clay (less than 0.0004 cm)	and minerals	Compact; may split easily	Shale	
	CHEMICALLY ANI	D/OR ORGANICAL	LY FORMED SEDIME	NTARY ROCKS	
TEXTURE	GRAIN SIZE	COMPOSITION	COMMENTS	ROCK NAME	MAPSYMBOL
	Fine	Halite	Crystals from	Rock salt	
Crystalline	to coarse	Gypsum	chemical precipitates	Rock gypsum	
	— crystals —	Dolomite	and evaporites	Dolostone	7 / /
Crystalline or bioclastic	Microscopic to	Calcite	Precipitates of biologic origin or cemented shell fragments	Limestone	
Bioclastic	very coarse	Carbon	Compacted plant remains	Bituminous coal	


Part 5 Lesson 5 Rocks Flow Chart

Part 5 Lesson 5 Sedimentary Rocks

Sedimentary rocks are a type of rock that is formed near the earth's surface from the compression of sediments and other processes.

Sedimentary Rocks are formed when fragments of rock are loosened by weathering. The rock is then transported to a basin or depression where the small sediment is trapped. The sediment eventually gets buried, gets compacted and cemented together. Clastic sedimentary rocks have particles ranging in size from microscopic clay to large boulders.

Sedimentary rocks are usually layered and are the only type of rocks that can have fossils. Road Cut sketch

Part 5 Lesson 6 Common Sedimentary Rocks

Which is a bogus statement about sedimentary rocks from the list below?

- A.) Sediments are gathered from cooling lava that forms crystals very quickly. -That is Igneous
- B.) Caused by weathering, erosion, and deposition.
- C.) Usually layered
- D.) Layers can be fossils and old living materials.

Which is a bogus statement about sedimentary rocks from the list below?

- A.) Sediments are gathered from erosion, transport and deposition.
- B.) Caused by weathering, erosion, and deposition.
- C.) Always horizontally layered. (Usually Layered)
- D.) Layers can be fossils and old living materials.

The size of the sediment classifies the type of sedimentary rock.

Clastic are very large pieces of sediment.

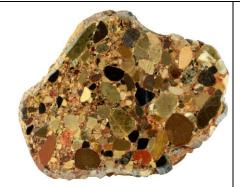
Crystalline are very small pieces of sediment.

Formed from evaporation or precipitation of minerals in water.

Bioclastic are from the compaction of organic matter.

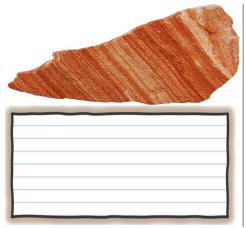
Name some examples of...

Clastic Sedimentary Rocks
Conglomerate
Sandstone
Siltstone
Shale


Crystalline (formed evaporation) Sedimentary Rocks Rock Salt Dolostone Gypsum Bioclastic . Organic Sedimentary Rocks Limestone Bituminous Coal

Please use the sedimentary rock identification scheme to describe...

Dolostone


This is Dolostone. It's a chemical rock that formed from chemical percipitates and evaporation. Its composition is from the dolomite mineral and it has a crystalline structure. It has fine to coarse crystals.

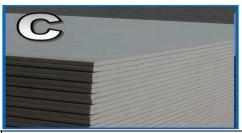
This is conglomerate. It's a fragmental clastic sedimentary rock.
Pebbles, cobbles and embedded in silt, sand and clay where they are cemented together.

This is limestone. It is a crystalline or bioclastic rock made from the remains of shelled creatures that have been cemented together. The mineral that makes it is calcite.

Name this Sedimentary Rock. Bioclastic texture, Composition is entirely carbon, compacted plant remains

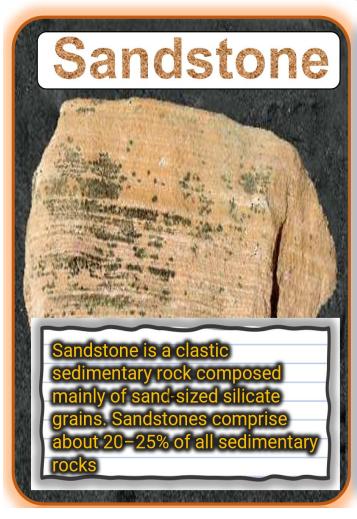
Name this Sedimentary Rock. Clastic Fragmental texture, composed of cobble, pebbles and boulder, embedded in clay or sand, Mostly Quartz and Feldspar, Angular Fragments

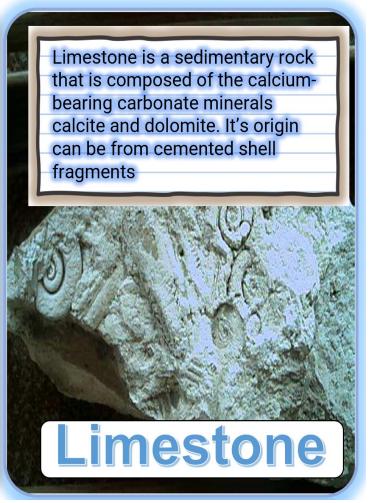
Which is clastic, crystalline, and bioclastic/organic? Also try and name the sedimentary rock?



Which is clastic, crystalline, and bioclastic/organic? Also try and name the sedimentary rock?

Which is clastic, crystalline, and bioclastic/organic? Also try and name the sedimentary rock?





Common Sedimentary Rocks

Please mention three things about these rocks.

Part 5 Lesson 7 Metamorphic Rocks

Metamorphic – Rock that changed forms due to extreme temperature and pressure

Common Metamorphic Rocks

Slate Gniess Marble

Common Sedimentary Rocks Limestone Sandstone Shale Conglomerate

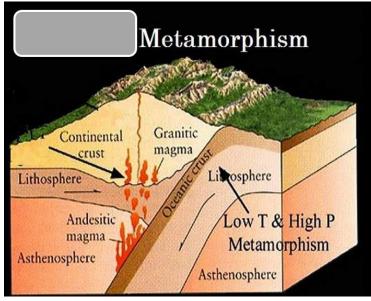
Scheme for Metamorphic Rock Identification

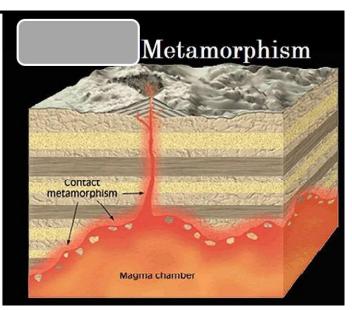
TE	XTURE	GRAIN SIZE	COMPOSITION	TYPE OF METAMORPHISM	COMMENTS	ROCK NAME	MAP SYMBOL
Q	L	Fine		Regional	Low-grade metamorphism of shale	Slate	
FOLIATED	MINERAL	Fine to		(Heat and pressure increases)	Foliation surfaces shiny from microscopic mica crystals	Phyllite	
Tense	ΑF	medium	MICA QUARTZ FELDSPAR AMPHIBOLE GARNET		Platy mica crystals visible from metamorphism of clay or feldspars	Schist	
	BAND- ING	Medium to coarse	QUA FELDS AMPHI GARN PYROXENE	•	High-grade metamorphism; mineral types segregated into bands	Gneiss	
		Fine	Carbon	Regional	Metamorphism of bituminous coal	Anthracite coal	
	ED	Fine	Various minerals	Contact (heat)	Various rocks changed by heat from nearby magma/lava	Hornfels	× × × × × × × × × × × × × × × × × × ×
	NONFOLIATED	Fine	Quartz	ov Noodkalland va	Metamorphism of quartz sandstone	Quartzite	
	S	to coarse	Calcite and/or dolomite	Regional or contact	Metamorphism of limestone or dolostone	Marble	
		Coarse	Various minerals		Pebbles may be distorted or stretched	Metaconglomerate	

 \Diamond Use the Metamorphic identification Scheme to describe the three metamorphic rocks below.

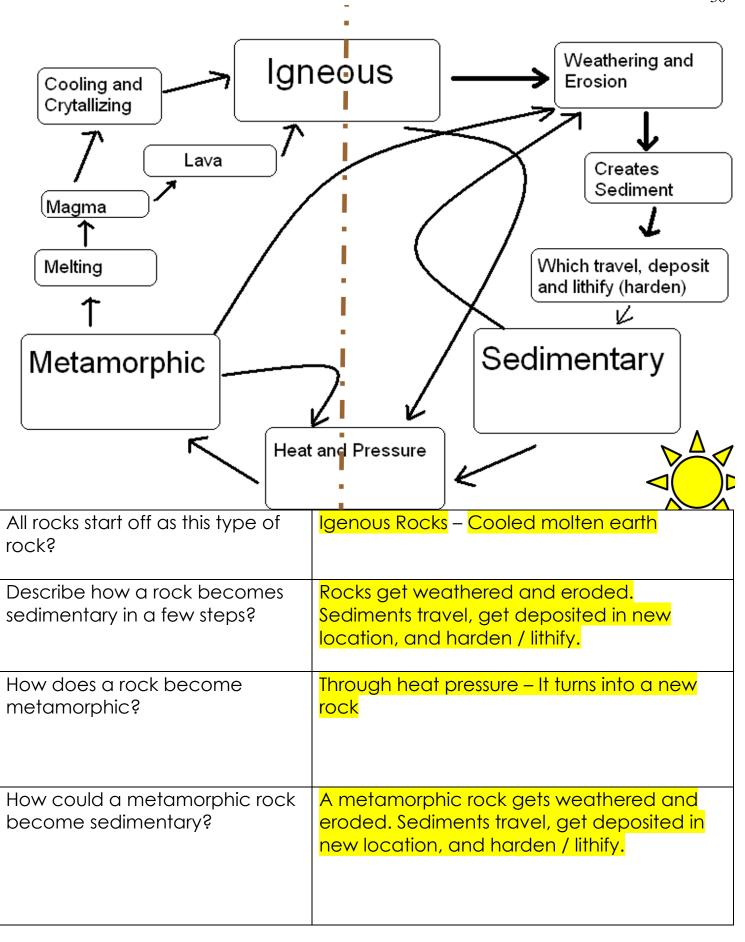
This is marble. It's nonfoliated. It has coarse to fine crystals and occurs from the metamorphism of limestone or dolostone.

This is gneiss. It's foliated and has medium to coarse crystals. Shale-> Slate-> Schist-> to Gneiss.


This is meatconglomerate. It's nonfoliated and has coarse crystals. The pebbles have been distorted and stretched.


Part 5 Lesson 8 Common Metamorphic Rocks

Which one is Regional Metamorphism? And which is Contact Regional Metamorphism?


Regional Metamorphism

Contact Metamorphism

Please use the chart below about the rock cycle to answer some questions below.

Which side (Right or Left) occurs above the earth's surface and which side occurs deeper in the crust?

The Right side occurs above the earths surface. Weathering and Erosion, Deposition all occur from processes on the surface.

Quiz Wiz from the slideshow

Igneous, Sedimentary, or Metamorphic Quiz

Igneous, Sedimentary, or Metamorphic Quiz

1 - Sedimentary	2 –Sedimentary	3-Igneous	4 Sedimentary					
Limestone	Sandstone	Pumice	Conglomerate					
5 Metamorphic	6 Igneous	7 Igneous	8 Metamorphic					
Metaconglomerate	Obsidian	Granite	Gneiss					
9 Igneous	10 Igneous	*11 School of	12 Teacher					
Basalt	Rhyolite	Rock	Choice					

Rock Identification Quiz

1 – Rhyolite	2-Shale	3-Granite	4-Gabbro
5-Limestone	6-Sandstone	7-Schist	8-Basalt
9 - Pumice	10 –Marble	11- Conglomerate	12 Diorite
13 Andesite	14 Rock Salt	15 Quartzite	16 Gneiss
<u>17</u>	18 Slate	19 Obsidian	20 (Choice)
Metaconglomerate			
*21 Kid Rock	*22 Rocky and		
	Bullwinkle		

Part 5 Rocks Review Game 11

Name: Score ____ / 100

1-20 = 5 pts

*20-*25 * = Bonus + 1 pt, (Secretly write owl in correct space +1 pt)

AROUND AND AROUND	MOLTEN HOT	SEDIMENTARY THOUGHT	CHANGING FORMS	FAMOUS ROCKS Bonus round 1 pt each
1)	6)	11)	16) <mark>owl +1</mark>	*21)
THE ROCK	<mark>A=Intrusive</mark>	C=Weathering	Temperatures	<u>Stonehenge</u>
CYCLE	B=Extrusive	B=Erosion	and Pressures	
0)	7)	A=Deposition	1.7\	*00)
2)	7)	12)	17)	*22)
A=Sedimentary	Letter D	Compression	A=non foliated	Easter Island
B=Metamorphic	"Cooled	Sediments	B=foliated	Easter Island
C=Igneous	Extrusive"	<u> </u>	D-Tollatea	
9,1000	2,411031110			
3)	8)	13)	18)	*23)
<u> Plate</u>	<mark>Basalt</mark>	A=Clastic	<u>Marbles</u>	<mark>Plymouth</mark>
Tectonics	Mafic	B=Chemical	Quartzite	Rock
4)	0)	C=Organic	10)	*0.4)
4)	9)	14)	19)	*24)
Letter B	<u>Obsidian</u>	<u>Sandstone</u>	A=Regional B = Contact	Alcatraz
Lener b	Felsic	<u>sariasione</u>	metamorphism	Alcanaz
	101510			
5)	10)	15)	20)	*25)
,	,	,	,	,
<mark>Igneous</mark>	<u>Granite</u>	<u>Shale</u>	<mark>Slate</mark>	Rock of
	Felsic			<u>Gibraltar</u>
Fig. at Over the in 144		Δ — λ 4 α 1 α α α	woleie D. Leve e eve	
Final Question W	ager <u>/5</u> An	iswer <mark>A=Metamo</mark>	orpnic, B=Igneous	, ,

C=S			y c	'I _	_/、	<u>)</u> ,	ΛI	12.4	٧Œ	1 <u>/-</u>	\ −1	VIE	, I O	11 1 1	OI	ווכ	IC,	, D	—ı(اال	IC (15,			
	 	 	 		 																	 	 	 -	