Part 6 Periodic Table

Alkali Metal

Alkaline Earth

Transition Metal

Basic Metal

Metalloid

Nonmetal

Halogen

Noble Gas

Lanthanide

Actinide

Name:

Part 6 Lesson 1 Periodic Table of the Elements Please describe how this arrangement of playing cards relates to the periodic table of elements. (Next Page)

	A ♣		2	÷		3	÷		4 * •	• •		5 ♣♣	*	6 . *	*	7	*	*	8.4	*	9 *	* *	10 ÷	***	J † T		K *
	÷						٠					ð	•		*		*	*	•	*		***		*** *_*			
		¥		Ť	Ż		۴	ŝ	٩	*	Ð	Ť	Ť\$	*	* 9		۴	* <u>*</u>	*	**	Ŀ	* * * 6		* ***	1 1		Ľ Ľ∰ ‡
	A V		2 ♥	٠		3 ¥	۷		4 9	• •		5,♥	•	€ ♥		7	۴.		8₽♥		₽.	• •	ļ	6			
	•						۷						•	•	•		Y	Ψ.								1998 -	
		\$		٠	8		٠	8		•	Đ		♠ ∯	•	. ♠ĝ		٠	♠ <u>≜</u>	Ä			A A 6			1 AMA		
[A • •		2 ♠	٨		3 ♠	٨		4 •			5 •	٠	6 •	٨	7	۸.	٠	8	٠	9.	• •	10 ¢		J		K
							٩					4			٠		¢,			۵ ۱				ATA Ŭ.Ŭ			
	-	¥		Ŷ	÷		Ŷ	έ	•	Ý	÷	Ŷ	Ψ¢	Ý	₩ţ		Ý	Ψţ	Ť	¥*8		ΨΨ ₆		ŤŤŤ OI	Ť	ð 🕄 🕈	ř.
Ī	A •		2	٠		3	٠		4.	• •	٦	5.♦	٠	6 •	٠	7	٠.	٠	8.◆	٠	₽.	• •	10	• •			
	•						٠							•	٠		•	•	•	•		•••		***		H	858
		÷		٠	ŧ		٠	ŝ		•	•	٠	♦	•			٠	• ؛	•	•		• • 6		↓ ↓ ↓	🏹	🏹 🕻	5333

Describe some information about the chemists below.

Warning 5 part question! Check each diamond when complete

◊ **Color code** the following: Noble Gases, Non-Metals, Metalloids, Alkali Metals, Halogens, Alkaline-Earth Metals, and Transition Metals.

◊ Next to period 1, 2, 3, 4, 5, (make a sketch of the number of electron orbitals)

Draw arrows showing the direction of increasing atomic number and atomic mass
 Show an arrow showing increasing electron negativity.

Η									Не
Li	Be			В	С	Ν	0	F	Ne
Na	Mg			AI	Si	Ρ	S	CI	Ar
K	Са	Sc	Ti	Ga	Ge	As	Se	Br	Kr
() ()) ()) () () ()									
PART 6 Le	<mark>sson 2 Arr</mark> dic table	<mark>angemer</mark> of the ele	<mark>nt / Eleme</mark> ements is o	ents in the	Periodic	Table			
	A chai	rt of all th	e	eler	nents.				

Is in order of ______atomic number and mass.

The table puts elements into groups with ______ characteristics.

Allows us to recognize _____ over the whole array of elements

1	IA 1 H	IIA		P	eri	00	lic	Ta	abl	е			IIIA	IVA	VA	VIA	VIIA	0 ² He
2	³ Li	⁴ Be		of the Elements														
3	11 Na	12 Mg	ШВ	IVB	VB	VIB	VIIB		- VII -		IB	IIB	¹³ Al	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ Cl	¹⁸ Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	²⁵ Mn	²⁶ Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	³⁴ Se	35 Br	³⁶ Kr
5	37 Rb	³⁸ Sr	³⁹	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	⁵⁴ Xe
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 W	75 Re	⁷⁶ Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
7	87 Fr	⁸⁸ Ra	⁸⁹ +Ac	104 Rf	¹⁰⁵ Ha	106 Sg	107 Ns	108 Hs	¹⁰⁹ Mt	110 110	111 111	112 112	113 113					
														I				
*	Lanth Series	anide s	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	⁶⁹ Tm	70 Yb	71 Lu		
+	Actini Series	de s	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	¹⁰³ Lr		
AMU increases from to andto Electron negativity increases from lower to upper																		
Ele	Electron negativity increases from lower to upper Electronegativity is a measure of the of an atom for the electrons in a chemical bond. The higher the electronegativity of an atom, the its attraction for bonding electrons.																	
		1	Electr their r	ons v nucle	vith _ ei do i	not e	_ ioniz xert c	zatior a stro	n ene ng at	rgies Itract	have tive fo	e a lo orce (w ele on ele	ectroi ectro	nega Ins.	tivity	beco	ouse

Elements with high ionization energies have a _____ electronegativity due to the strong pull exerted on electrons by the nucleus.

PART 6 Lesson 3 Arrangement / Metals

Record some information about the two elements below. What group are they in and why?

87: Francium 2,8,18,32,
18,8,1

Transition Metals, found in middle

Metal's that are malleable and ductile

- Ductile- Made into _____
- Malleable Made into _____

Metals are also...

Good conductors of ______ Have a high ______ (shine). Mostly _____ (Hg is a liquid). Metallically Bonded Many metals are _____ reactive Most have a _____ density.

Almost _____ of all elements are classified as metals. Alloys: Metals are easily _____

Some of the metals

Actinide Metals, Lanthanide Metals, Alkali Metals, Alkaline-Earth Metals, Noble Metals, and Transition Metals.

Non-Metals

They're _____ metals H and He are non-metals They are poor _____ They are _____, not ductile They show _____ metallic luster They may be transparent or translucent They have _____ density ______ bonded.

SPONCH -25 of the elements are essential for life.

These are the Biologically Important Elements

(These letters deserve to look cool, please put their names below)

_		·	/	
_				
	Name			

Name			
% in living things			

Animal / SPONCH Graph

If these athletes were biologically important Elements, which element is used the most (1st), 2nd, and 3rd in living things.

Metalloids/Semimetals Properties of metals and non-metals _____-conductors B

Can have _

PART 6 Lesson 4 Metals, Non-metals, and metalloids investigation

Which is a metal, non-metal, and semi-metal / metalloid?

Describe some the similarities and differences between metals, nonmetals, and metalloids?

Name some...

Metals	Non-metals	Metalloids

Which elements had properties of more than one group?

Predict the physical and chemical properties of Calcium, Cadmium, and Selenium.

Complete the chart below from the metals, non-metals, and metalloids investigation.

Zine	SULFUR	Magnesium	SILICON	IRON FILINGS	CARBON	ALUMINUM	ELEMENT
	,						CHEMICAL SYMBOL
							COLOR
							METALLIC LUSTER Y/N?
							PHYSICAL PROPERTIES
							BRITTLE Y/Nậ
							REACTION With HCL?
							REACTION with CuCl2
							CONDUCTS ELECTRICITY?

Please describe unique properties of metals, non-metals, and metalloids in the correct boxes below. Use ductile, malleable, luster, electrical conduction, and other property that you know.

PART 6 Lesson 5 Noble Gases, Halogens, Other Elements

The noble gases make up a class of chemical elements with similar properties; under standard conditions, they are all ______, colorless, with very _____ chemical reactivity.

• The six naturally occurring noble gases are helium, neon, argon, krypton, xenon, and the radioactive radon.

 Halogens readily combine with most elements and are never seen _________in nature.

 Diatomic - Chlorine (_____)

 Bromine (_____), Iodine (_____), Fluorine (_____)

Notes on the halogens and other elements.

PART 6 Lesson 6 Wrap-Up, Review, Quiz, and Project

Example of Periodic Table Rese Name of Element Name of Element	earch Project Atom Atom	ic # ic #
Electron Configuration	16	Sulfur is often found near volcanoes and can be collected in mines and sometimes at the surface.
Sulfur has 16 Electrons and 16 Protons. It is a perfect element and usually doesn't occur as an Isotope. Electron Configuration	Sulfur	Found? Sulfur is a part of gun powder and used in explosives. The ancient Chinese were among the first to discover it's power.
1s2 2s2 2p6 3s2 3p4	32.065 am This is a picture of Sul	IU fur. It

This is a picture of Sulfur. It is a non-metal. It does not have luster, it is brittle, and does not conduct electricity.

Jefferson Lab. (2011) Interactive Periodic Table. Retrieved from http://education.jlab.org/itselemental/

Copyright © 2010 Ryan P. Murphy

Your Name!

- Article title not italicised, journal title and volume number are
- All words in journal title should be capitalised

Author surname, initial (s). (Year). Article title. Journal Title, Volume Number(issue or part number, optional), page numbers. DOI or Retrieved from URL

Only included if the article is online Note: DOI is preferred

Quiz Wiz 1-20 Name that Element

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16
17	18	19	20
*21 Bonus	*22 Bonus		

Please visit the class periodic table of elements and record information about elements in the space below. Please describe the elements uses, unique properties, isotopes, location of earth, etc.

Possible Answers

ELEMENTS, ORBITALS, AMU, ALKALI, ALKALINE, ALLOY, DUCTILE, ELECTRONEGATIVITY, FLUORINE, FRANCIUM, HALOGENS, HYDROGEN, LANTHANIDE, LAVOISIER, LIVING, MALLEABLE, MENDELEEV, MERCURY, METALLOIDS, MOSELEY, NOBLE, NUMBER, PERIOD, TRANSITION, BONDING, ELECTRICITY, ELECTRONS, FAMILY, HEAT, IONIZATION, LUSTER, NONMETAL, SIMILAR

Across

Vertical column is called a group/_____.
 (Same # of valence electrons)

3. Antoine-Laurent de_____: A French nobleman and chemist. He had large influence on both the histories of chemistry and biology. He is widely considered to be the "Father of Modern Chemistry."

6. The _____ gases make up a class of chemical elements with similar properties; under standard conditions, they are all odorless, colorless, with very low chemical reactivity.

7. Electrons with low ______ energies have a low electronegativity because their nuclei do not exert a strong attractive force on electrons.

8. To be shaped / made into sheets.

12. The Rare Earth Elements are made up of two series of elements, the _____ and Actinide Series

13. Made into wire.

17. This is a liquid metal at room temperature 18. The periodic table is arranged in order of

increasing atomic _____ and mass.

20. Metals often conduct _____

21. All of the elements in a period have the same number of atomic _____.

22. 1st Group _____ Metals

23. _____ things are made of these elements. SPONCH or CHNOPS

24. These metals are found in the middle of Periodic Table

29. ______ an odd ball. It's grouped with the alkali metals because it has a similar outer shell electron configuration as they do. It's not metal?

31. Metals often have a high _____ (shine).

Down

 The higher the electronegativity of an atom, the greater its attraction for ______ electrons.

2. The least electronegative element is

4. _ _ _ increases from left to right and top to bottom.

5. The table puts elements into groups with _____ characteristics.

9. The _____ Earth Elements are

metallic elements found in the second period of the periodic table.

_____ increases from lower left to upper right.

11. Electronegativity is a measure of the attraction of an atom for the _____ in a chemical bond.

14. Metals are usually good conductors of

15. Periodic Table of the...

16. Dimitri _____, the father of The Periodic Table of the Elements.

19. The most strongly electronegative element _____.

25. Metals are easily combined to create a_____

26. A ______ is a chemical element that mostly lacks the characteristics of a metal. Physically, a nonmetal tends to have a relatively low melting point, boiling point, and density.

27. British chemist Henry _____ in 1913. He proposed that the atom contains in its nucleus a number of positive nuclear charges that is equal to its (atomic) number in the periodic table.

28. _____ / Semi metals: Properties of metals and non-metals

29. Group 17, (Salt-former) They exist, at room temperature, in all three states of matter.

30. Horizontal row is called a ______ -Same # of orbitals

Part 6 Review Game

1-10 = 10 pts * = Bonus + 1 pt, (Secretly write owl in correct space +1 pt) Final Question = 5 pt wager

IN YOUR HEAVY METAL TOO CRUMBLY NAME GAME ROBOTO Bonus round ELEMENT 1 pt each *21) 1) 11) 16) 6) *22) 2) 7) 12) 17) 3) 8) 13) 18) *23) 19) *24) 4) 9) 14) 5) 15) *25) 10) 20)

Final Question Wager _____ /5_ Answer: _____

20

Lesson 7

Name: Due: Today Score ____ / 100

Part 6 Periodic Table

Name:

				Due Do	ate:	
87 Fr (223)	55 Cs 132.90545	37 Rb 85.4678	19 K 39.0983	11 Na 22.989770	3 Li 6.941	1 H 1.00794
88 Ra (226)	56 Ba 137.327	38 Sr ^{87.62}	20 Ca 40.078	12 Mg 24.3050	4 Be 9.012182	
89 Ac (227)	57 La 138.9055	39 Y 88.90585	21 Sc 44.955910			
104 Rf (261)	72 Hf 178.49	40 Zr 91.224	22 Ti 47.867			
105 Db (262)	73 Ta 180.94.79	41 Nb 92.90638	23 V 50.9415			
106 Sg (263)	74 W 183.84	42 Mo _{95.94}	24 Cr 51.9961			
107 Bh (262)	75 Re 186.207	43 TC (98)	25 Mn 54.938049			
108 HS (265)	76 Os 190.23	44 Ru 101.07	26 Fe 55.845			
109 Mt (266)	77 Ir 192.217	45 Rh 102.90550	27 Co 58.933200			
110 (269)	78 Pt 195.078	46 Pd 106.42	28 Ni 58.6534			
111 (272)	79 Au 196.56655	47 Ag 196.56655	29 Cu _{63.545}			
112 (277)	80 Hg 200.59	48 Cd 112.411	30 Zn 65.39			
	81 TI 204.3833	49 In 114.818	31 Ga 69.723	13 Al 26.581538	5 B 10.811	-
114 (289) (287)	82 Pb 207.2	50 Sn 118.710	32 Ge 72.61	14 Si 28.0855	C 12.0107	
	83 Bi 208.58038	51 Sb 121.760	33 As 74.92160	15 P 30.973761	7 N 14.00674	
116 (289)	84 Po (209)	52 Te 127.60	34 Se 78.96	16 S 32.066	8 0 15.9994	
	85 At (210)	53 126.90447	35 Br 79.504	17 Cl 35.4527	9 F 18.9984032	
118 (293)	86 Rn (222)	54 Xe 131.29	36 Kr 83.80	18 Ar 39.948	10 Ne 20.1797	2 He 4.002602

232.0381	Th	06	58 Ce 140.116
231.035888	Pa	91	59 Pr 140.50765
238.0289		26	60 Nd 144.24
(237)	Np	56	61 Pm (145)
(244)	Pu	94	62 Sm 150.36
(243)	Am	56	63 Eu 151.964
(247)	Cm	96	64 Gd 157.25
(247)	Bk	97	65 Tb 158.92534
(251)	Ç	86	66 Dy 162.50
(252)	Ę	66	67 Ho 164.93032
(257)	Fm	100	68 Er 167.26
(258)	Md	101	69 Tm 168.93421
(259)	No	102	70 Yb 173.04
(262)	Ţ	103	71 Lu 174.967

Part 6 Lesson 1 Periodic Table of the Elements

Please describe how this arrangement of playing cards relates to the periodic table of elements. (Next Page)

Describe some information about the chemists below.

Warning 5 part question! Check each diamond when complete

◊ **Color code** the following: Noble Gases, Non-Metals, Metalloids, Alkali Metals, Halogens, Alkaline-Earth Metals, and Transition Metals.

◊ Next to period 1, 2, 3, 4, 5, (make a sketch of the number of electron orbitals)

Oraw arrows showing the direction of increasing atomic number and atomic mass

 \diamond Show an arrow showing increasing electron negativity.

PART 6 Lesson 2 Arrangement / Elements in the Periodic Table

The periodic table of the elements is a...

A chart of all the known elements. Is in order of increasing atomic number and mass. The table puts elements into groups with similar characteristics. Allows us to recognize trends over the whole array of elements 23

1	Periodic Table										0 ² He							
2	³ Li	⁴ Be	of the Elements										10 Ne					
3	¹¹ Na	a Mg IIIB IVB VB VIB VIIB — VII — IB IIB IIB AI SI F								¹⁵ P	¹⁶ S	¹⁷ Cl	¹⁸ Ar					
4	¹⁹ K	20 Ca	²¹ Sc	22 Ti	23 V	²⁴ Cr	²⁵ Mn	Fe	27 Co	28 Ni	²⁹ Cu	30 Zn	³¹ Ga	³² Ge	33 As	³⁴ Se	³⁵ Br	³⁶ Kr
5	³⁷ Rb	³⁸ Sr	³⁹	40 Zr	41 Nb	42 Mo	43 Tc	⁴⁴ Ru	⁴⁵ Rh	46 Pd	47 Ag	⁴⁸ Cd	49 In	⁵⁰ Sn	51 Sb	52 Te	53 	⁵⁴ Xe
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	⁸⁴ Po	85 At	⁸⁶ Rn
7	⁸⁷ Fr	⁸⁸ Ra	89 +Ac	104 Rf	¹⁰⁵ Ha	106 Sg	107 Ns	¹⁰⁸ Hs	109 Mt	110 110	111 111	¹¹² 112	¹¹³ 113					
*	Lanth Series	anide s	58 Ce	⁵⁹ Pr	60 Nd	61 Pm	62 Sm	63 Eu	Gd	65 Tb	66 Dy	67 Ho	68 Er	⁶⁹ Tm	70 Yb	71 Lu		
+	Actini Series	de s	90 Th	91 Pa	⁹² U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	¹⁰⁰ Fm	101 Md	102 No	¹⁰³ Lr		

AMU increases from <mark>left</mark> to <mark>right</mark> and <mark>up</mark> to down. Electron negativity increases from lower <mark>left</mark> to upper <mark>right.</mark>

Electronegativity is a measure of the attraction of an atom for the electrons in a chemical bond.

The higher the electronegativity of an atom, the greater its attraction for bonding electrons.

Electrons with low ionization energies have a low electronegativity because their nuclei do not exert a strong attractive force on electrons.

Elements with high ionization energies have a high electronegativity due to the strong pull exerted on electrons by the nucleus.

PART 6 Lesson 3 Arrangement / Metals

Record some information about the two elements below. What group are they in and why?

Transition Metals, found in middle Metal's that are malleable and ductile Ductile- Made into wire Malleable - Made into sheets

Metals are also...

Good conductors of electricity Have a high luster (shine). Mostly Solid (Hg is a liquid). Metallically Bonded Many metals are extremely reactive Most have a high density.

Almost <mark>75%</mark> of all elements are classified as metals. Alloys: Metals are easily <mark>combined</mark>

Some of the metals

Actinide Metals, Lanthanide Metals, Alkali Metals, Alkaline-Earth Metals, Noble Metals, and Transition Metals.

Non-Metals

They're not metals H and He are non-metals They are poor conductors They are brittle, not ductile They show no metallic luster They may be transparent or translucent They have low density Covalently bonded.

SPONCH -25 of the elements are essential for life.

These are the Biologically Important Elements

SPONCH -25 of the elements are essential for life.

These are the Biologically Important Elements (These letters deserve to look cool, please put their names below)

If these athletes were biologically important Elements, which element is used the most (1st), 2nd, and 3rd in living things.

Metalloids/Semimetals Properties of metals and non-metals Semi-conductors Brittle Can have luster

PART 6 Lesson 4 Metals, Non-metals, and metalloids investigation

Which is a metal, non-metal, and semi-metal / metalloid?

Describe some the similarities and differences between metals, nonmetals, and metalloids?

Metal	Non-Metal	Metalloid
Magnesium	Sulfur	Silicon
Zinc	Carbon	
Aluminum		
Copper		

Which elements had properties of more than one group? Answer: Silicon had properties of metals and non-metals. It was like a metal because it conducted electricity and had luster. It was like a non-metal because it was brittle.

Predict the physical and chemical properties of Calcium, Cadmium, and Selenium.

Calcium: Metal, Reactive with Acid, luster, conductive. Similar to Magnesium

Cadmium: Metal, reactive with acid, conductive, similar to Zinc. Selenium: Non-metal, brittle, poor conductor. Similar to Sulfur. Complete the chart below from the metals, non-metals, and metalloids investigation.

ELEMENT	CHEMICAL SYMBOL	COLOR	METALLIC LUSTER Y/N?	PHYSICAL PROPERTIES	BRITTLE Y/N?	REACTION With HCL?	REACTION with CuCl2	CONDUCTS ELECTRICITY?
ALUMINUM		Metallic luster	Yes	High Density Malleable Ductile	No	Bubbles, Heat, Color Change Brown/black	Bubbles, Color Change	Good Conductor
CARBON	С	Black	No	Low Density	Yes	Non- -reactive	Non- -reactive	Yes (graphite)
IRON FILINGS	Fe	Metallic luster	Yes	High Density Malleable Ductile	No	Bubbles, Heat, Color Change Brown/black	Bubbles, Color Change	Good Conductor
SILICON	SI	Metallic luster	Yes	High Density Not Malleable Ductile	No Yes	Non- -reactive	Non- -reactive	Semi Conductor
Magnesium	Mg	Metallic luster	Yes	High Density Malleable Ductile	No	Extremely Reactive Bubbles, Heat,	Bubbles, Color Change	Good Conductor
SULFUR	^S	Yellow	No	Low Density Smells of Rotten Eggs	Yes	Non- -reactive	Non- -reactive	Poor Conductor
Zinc	Zn	Metallic luster	Yes	High Density Malleable Ductile	No	Reactive Bubbles, Heat,	Bubbles, Color Change	Good Conductor

Marie Curie is famous for work in radioactivity. This transformed sciences understanding of that field. She discovered radium and polonium. She contributed to cancer treatments and inspire people today.

Please describe unique properties of metals, non-metals, and metalloids in the correct boxes below. Use ductile, malleable, luster, electrical conduction, and other property that you know.

Non-metals can be gas, liquid or solid. They aren't shiny (lustrous) and they don't conduct heat or electricity well. Usually, their melting points are lower than for metals, although there are exceptions. The solids usually break easily, and can't bend like metals •Metals...

- •high melting points.
- good conductors of electricity
- good conductors of heat.
- high density.
- •malleable.
- •ductile.

Metallic Bonds: The Sharing of free electrons among a structure of positively changed ions.

Ð

Semimetals (metalloids) are chemical elements that have properties of both metals and nonmetals. They can be important semiconductors, used in computer and other electronic devices

PART 6 Lesson 5 Noble Gases, Halogens, Other Elements

The noble gases make up a class of chemical elements with similar properties; under standard conditions, they are all <mark>odorless,</mark> colorless, with very <mark>low</mark> chemical reactivity.

• The six naturally occurring noble gases are helium, neon, argon, krypton, xenon, and the radioactive radon.

Halogens readily combine with most elements and are never seen uncombined in nature. • Chlorine (Cl₂) Bromine (Br₂), Iodine (l₂), Fluorine (F₂)

Notes on the halogens and other elements.

PART 6 Lesson 6 Wrap-Up, Review, Quiz, and Project

Example of Periodi	c Table Research Project	
Name of Element		_Atomic #
Name of Element		_Atomic #

Configuration

usually doesn't occur as an Isotope. Electron Configuration 1s2 2s2 2p6 3s2 3p4

Electron

Image of Element Sulfur is often found near volcanoes and can be collected in mines and sometimes at the surface.

Sulfur is a part of gun powder and used in explosives. The ancient Chinese were among the first to discover it's power.

Sulfur 32.065 amu

This is a picture of Sulfur. It is a non-metal. It does not have luster, it is brittle, and does not conduct electricity.

Jefferson Lab. (2011) Interactive Periodic Table. Retrieved from http://education.jlab.org/itselemental/

Copyright © 2010 Ryan P. Murphy

Your Name!

- Article title not italicised, journal title and volume number are
- All words in journal title should be capitalised

Author surname, initial (s). (Year). Article title. Journal Title, Volume Number(issue or part number, optional), page numbers. DOI or Retrieved from URL

Only included if the article is online Note: DOI is preferred

Quiz Wiz 1-20 Name that Element

1 <mark>Sulfur # 16</mark>	2 <mark>Nitrogen #7</mark>	3 <mark>Sodium</mark> #11 (+1 Ionic)	4 Copper #29
5 Magnesium #12	6 <mark>Helium #2</mark>	7 <mark>Radon # 86</mark>	8 <mark>Silicon #14</mark>
9 <mark>Fluorine #9</mark>	10 Mercury #80	11 <mark>Tin #50</mark>	12 <mark>Aluminum #13</mark>
13 <mark>NEON #10</mark>	14 URANIUM #92	15 <mark>Boron #5 +1 Owl</mark>	16 Francium #87
17 <mark>Carbon #6</mark>	18 <mark>Gallium #31</mark>	19 <mark>Iron #26</mark>	20 <mark>Oxygen # 8</mark>
*21 Bonus	*22 Bonus		
Indiana Jones and	Flint Lockwood & Sam		
the Raiders of the Los <mark>Ark</mark>	Sparks		

Please visit the class periodic table of elements and record information about elements in the space below. Please describe the elements uses, unique properties, isotopes, location of earth, etc.

Possible Answers

ELEMENTS, ORBITALS, AMU, ALKALI, ALKALINE, ALLOY, DUCTILE, ELECTRONEGATIVITY, FLUORINE, FRANCIUM, HALOGENS, HYDROGEN, LANTHANIDE, LAVOISIER, LIVING, MALLEABLE, MENDELEEV, MERCURY, METALLOIDS, MOSELEY, NOBLE, NUMBER, PERIOD, TRANSITION, BONDING, ELECTRICITY, ELECTRONS, FAMILY, HEAT, IONIZATION, LUSTER, NONMETAL, SIMILAR

Across

Vertical column is called a group/_____.
 (Same # of valence electrons)

3. Antoine-Laurent de_____: A French nobleman and chemist. He had large influence on both the histories of chemistry and biology. He is widely considered to be the "Father of Modern Chemistry."

6. The _____ gases make up a class of chemical elements with similar properties; under standard conditions, they are all odorless, colorless, with very low chemical reactivity.

7. Electrons with low ______ energies have a low electronegativity because their nuclei do not exert a strong attractive force on electrons.

8. To be shaped / made into sheets.

12. The Rare Earth Elements are made up of two series of elements, the _____ and Actinide Series

13. Made into wire.

17. This is a liquid metal at room temperature 18. The periodic table is arranged in order of

increasing atomic _____ and mass.

20. Metals often conduct _____

21. All of the elements in a period have the same number of atomic _____.

22. 1st Group _____ Metals

23. _____ things are made of these elements. SPONCH or CHNOPS

24. These metals are found in the middle of Periodic Table

29. ______ an odd ball. It's grouped with the alkali metals because it has a similar outer shell electron configuration as they do. It's not metal?

31. Metals often have a high _____ (shine).

Down

 The higher the electronegativity of an atom, the greater its attraction for ______ electrons.

2. The least electronegative element is

4. _ _ _ increases from left to right and top to bottom.

5. The table puts elements into groups with _____ characteristics.

9. The _____ Earth Elements are

metallic elements found in the second period of the periodic table.

_____ increases from lower left to upper right.

11. Electronegativity is a measure of the attraction of an atom for the _____ in a chemical bond.

14. Metals are usually good conductors of

15. Periodic Table of the...

16. Dimitri _____, the father of The Periodic Table of the Elements.

19. The most strongly electronegative element _____.

25. Metals are easily combined to create a_____

26. A ______ is a chemical element that mostly lacks the characteristics of a metal. Physically, a nonmetal tends to have a relatively low melting point, boiling point, and density.

27. British chemist Henry _____ in 1913. He proposed that the atom contains in its nucleus a number of positive nuclear charges that is equal to its (atomic) number in the periodic table.

28. _____ / Semi metals: Properties of metals and non-metals

29. Group 17, (Salt-former) They exist, at room temperature, in all three states of matter.

30. Horizontal row is called a ______ -Same # of orbitals

Part 6 Review Game

1-10 = 10 pts * = Bonus + 1 pt, (Secretly write owl in correct space +1 pt) Final Question = 5 pt wager Lesson 7

Name: Due: Today Score ____ / 100

IN YOUR ELEMENT	HEAVY METAL	TOO CRUMBLY	NAME GAME	ROBOTO Bonus round 1 pt each
1) Dmitri Mendeleev & Henry Moseley	6) Electron- Negativity Trend	11) <mark>Fluorine</mark>	16) <mark>Mercury is a</mark> liquid at room <mark>temperature</mark>	*21) The Terminator
2) <mark>118 Range</mark> (108-128)	7) <mark>D.) Extremely</mark> brittle.	12) <mark>Noble</mark> Gases	17) <mark>Radon</mark>	*22) <mark>Magneto</mark>
3) B.) Is in order of increasing atomic number and mass.	8) <mark>F.) Forms ionic</mark> bonds.	13) A=Alkali Metals B=Na C= (Ar)4s1 D=37	18) <mark>Alkaline Earth</mark> Metals	*23) <mark>Usher</mark>
4) <mark>4th Orbital</mark> <mark>4th Period</mark>	9) <mark>Alloys</mark>	14) <mark>Letter B</mark>	19) <mark>Fluorine</mark>	*24) <mark>Carbonite</mark>
5) <mark>A= Family</mark> Group <mark>B=Period</mark>	10) <mark>Semimetals or</mark> Metalloids	15) <mark>Hydrogen</mark>	20) <mark>Uranium</mark>	*25) Jack and the Giant Slayer

Final Question Wager <u>/5</u> Answer: The first ten elements in the Modern Periodic Table are hydrogen, helium, lithium, beryllium, boron, carbon, nitrogen, oxygen, fluorine and neon

Copyright 2024 SlideSpark .LLC All Rights Reserved