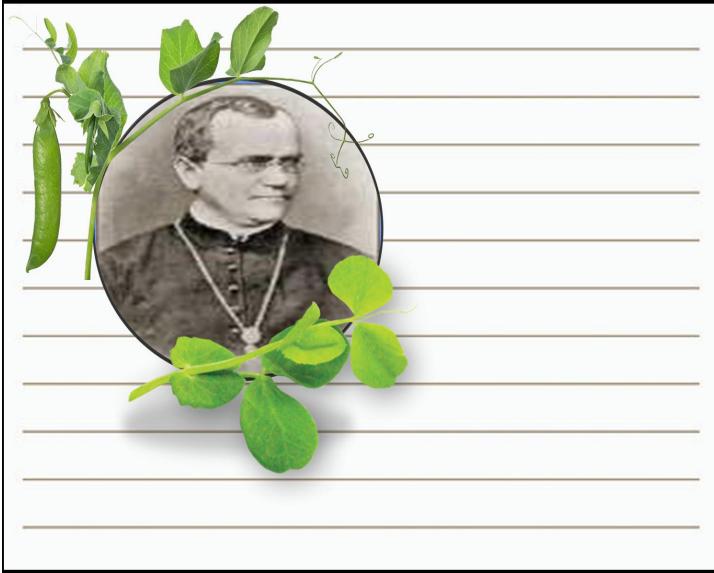

Part 5 Genetics

Part 5 Lesson 1 Intro to Genetics and Mendel


Circle what human phenotypes you display?

Name: Due:

Can you mark your bingo sheet? Any Bingo's? First one to say BINGO may get a prize.

Dimples	No Freckles	No widows Peak	Alergies	Hitch hikers thumb
No Finger Hair	Cleft chin	Trait in common - Left	No Dimples	Widows Peak
Finger Hair	Curly hair	Free!	Shared trait - Left	I cross my right thumb over my left when I clasp my hands
No Dimples	Second Toe Longest	Not appendippe but we'll use Can not roll tongue	Right Handed	First Toe Longest
No finger Hair	Straight hairline	I cross my left thumb over my right when I clasp my hands	Detached earlobes	Bent Little Finger

Gregor M_____: The father of modern genetics. He counted his results and kept "almost too perfect" statistical notes, much like your science journal. The year was 1851, a young priest from Vienna studied mathematics and science at the university. Upon finishing, he went back to priesthood and tended a garden outside of the monastery. He worked with pea plants and became curious as to why some pea plants had different characteristics or

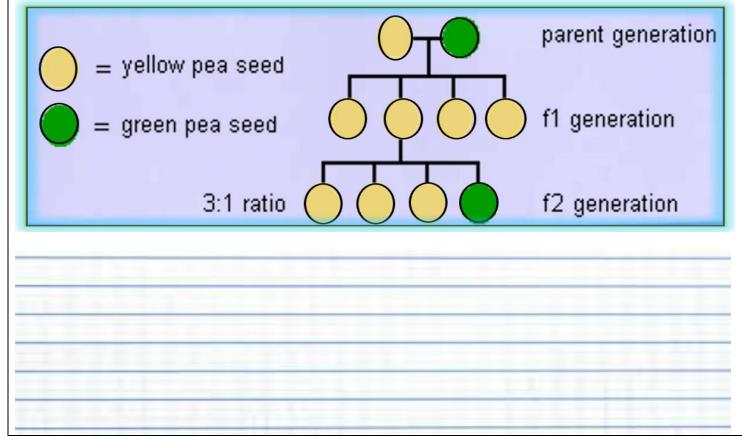
S______Breeding: The intentional breeding of organisms with desirable traits in an attempt to produce offspring with similar desirable characteristics or with improved traits.

Descent with Modification: The passing on of traits from parent organisms to their offspring. Offspring will display small ______.

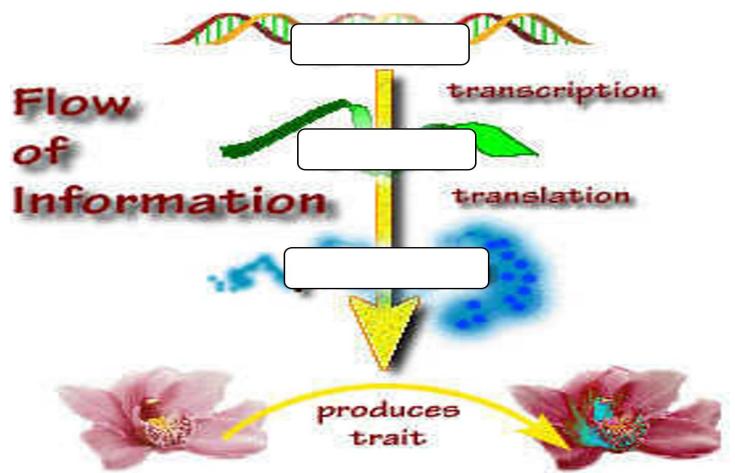
Darwin found that nature is just like selective breeding but is done automatically. – The ______ decides who lives and dies.

Part 5 Lesson 2 Alleles, Mendel and More terms

Mendel seemed to notice that pea plants tended to pass traits from parents to offspring, which is called _____.

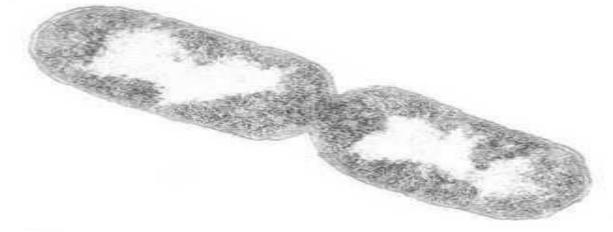

Law of segregation (Heredity), states that allele pairs separate or segregate during gamete formation, and ______ unite at fertilization.

- A gene can exist in _____ than one form.
- Organisms inherit _____ alleles for each trait.
- When gametes are produced (by meiosis), allele pairs _____ leaving each cell with a _____ allele for each trait.


Mendel started doing experiments with ______plants, or plants that always produce offspring with the _____ trait as the parent. For example, short pea plants always produce short offspring. Mendel then decided to cross short pea plants with tall pea plants.

What do you think Mendel got when he bred	What do you think Mendel got when he bred
tall and short?	all of those tall offspring?
A.) Medium sized plants.	A.) Medium sized plants.
B.) Half tall, and half short.	B.) Most tall and some short.
C.) All Short	C.) All Short
D.) All Tall	D.) All Tall
E.) They won't germinate	E.) They won't germinate.

Please write about Gregor Mendel and his research with pea plants and early genetics using this diagram. What is so significant when comparing the f1 and f2 generation?



An organism's ______ is its physical appearance or its visible traits. An organism's ______ is its genetic makeup, or allele combinations.

From all of Mendel's' results, he reasoned that individual factors must control the inheritance of traits in peas. Mendel knew that the female contributes one factor, while the male contributes the other factor in ________.

What type of reproduction are these bacteria doing?

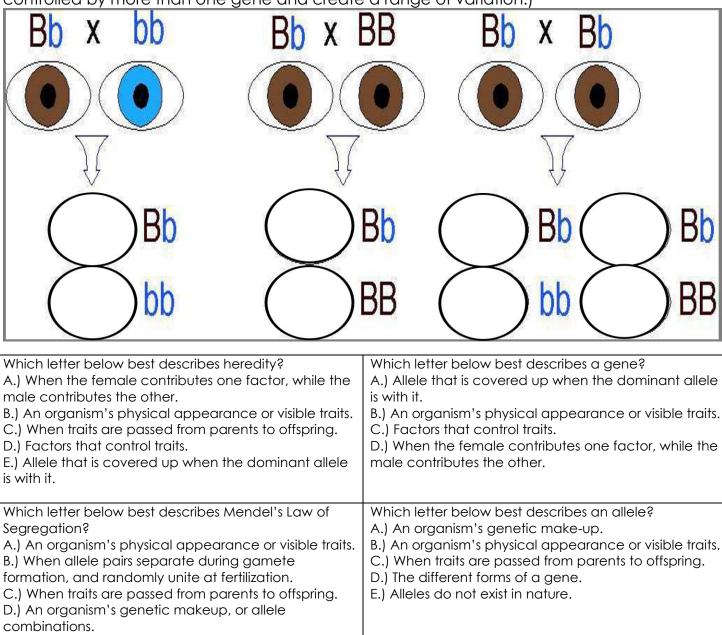
Today's scientists call the factors that control traits _____. Scientists call the different forms of gene _____.

A dominant allele is one whose trait always shows up in the organism when the allele is present. A _______ is covered up when the dominant allele is with it. A has two different alleles.

T = Dominant

t = Recessive

TT = Two dominant


tt = Two recessive

E.) Allele that is covered up when the dominant allele

is with it.

Tt = One dominant, one recessive

Please sketch in the correct eye Color if Brown color (B) is dominant and (b) blue color is recessive. (Note-It's more complicated than below as human eye color is polygenic, controlled by more than one gene and create a range of variation.)

Mendel's Laws of Heredity:

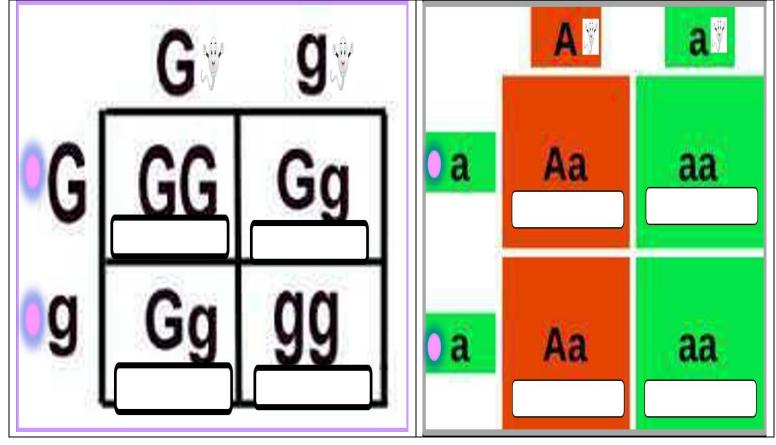
- 1) The Law of Segregation: Each inherited _______ is defined by a ______pair. Parental genes are randomly separated to the sex cells so that sex cells contain only ______gene of the pair. Offspring therefore inherit one genetic _______from each parent when sex cells unite in f______.
- 2) The Law of Independent Assortment: ______ for different traits are sorted ______ from one another so that the inheritance of one trait is not ______ on the inheritance of another.
- 3) The Law of Dominance: An organism with alternate forms of a gene will express the form that is ______.

Most traits are _____genic, controlled by _____ or _____ genes with six alleles.

- Height, eye color, skin color, are all controlled by multiple alleles.

Punnett Square: A diagram that is used to ______ the outcome of a particular cross. _ (______ / likelihood that that an event / cross will occur)

Please use complete the Punnett square and then describe which gender controls the sex of the child in humans? Please respond on the lines below.		Y ale Y
	X XX Female	
	x	


Sex Chromosome: A _______involved with determining the sex of an organism, typically one of two kinds. (_____)

Biologist ______ in 1905 Discovered the X and Y chromosome and answered the thousand year old question of why boys become boys and girls become girls.

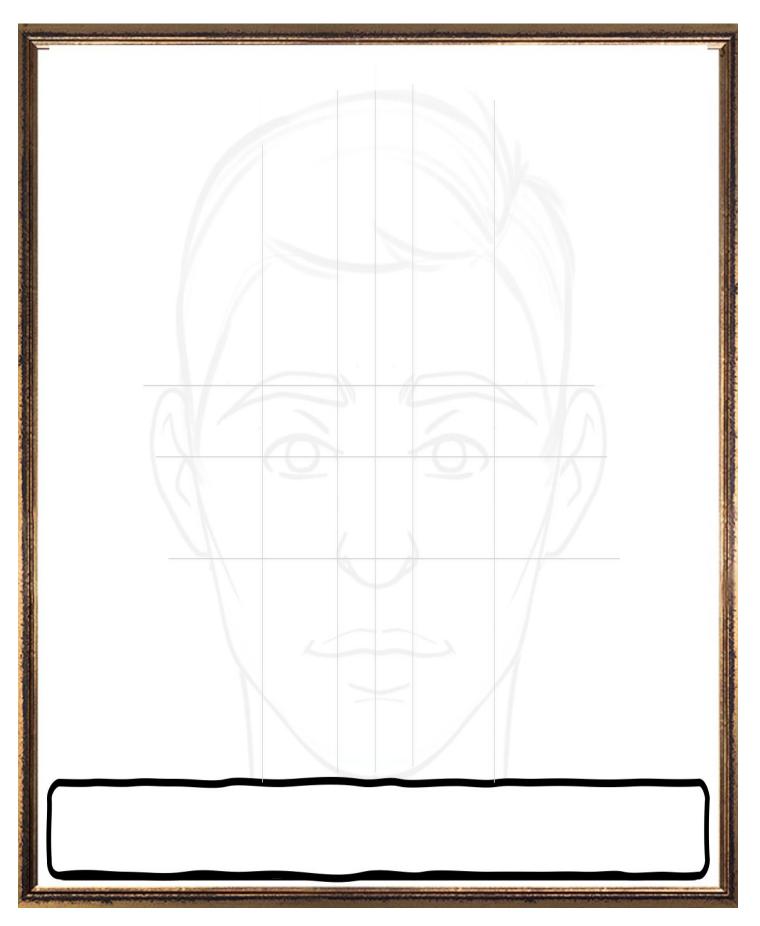
Part 5 Lesson 4 Probability and Punnett Squares

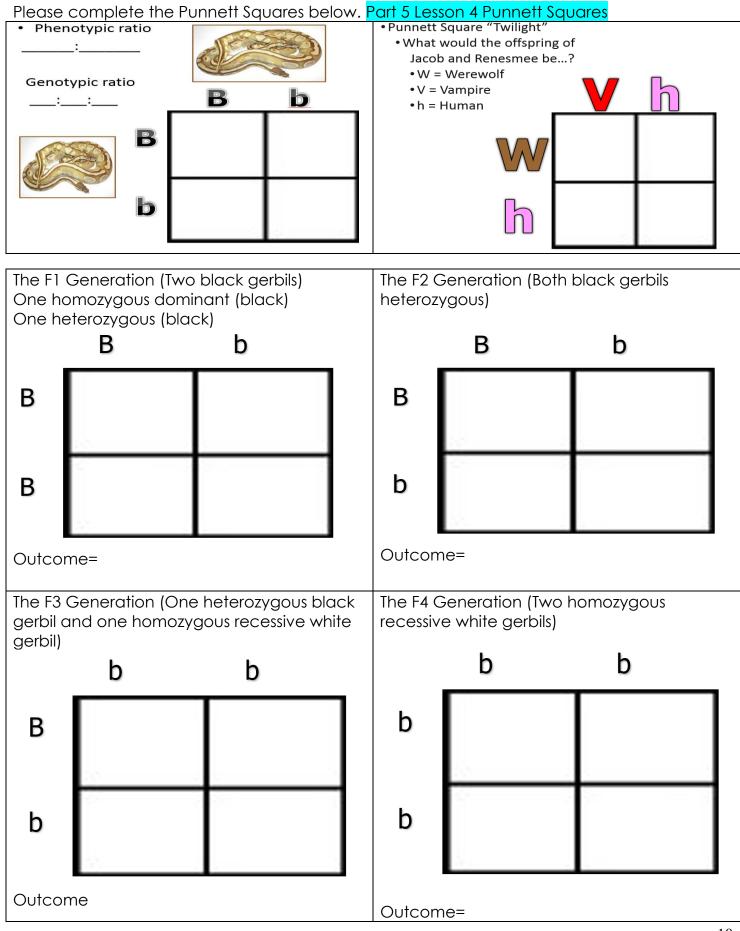
Genetics deals heavily with probability, or the ______ that a particular event will occur.

Please record which boxes in the Punnett Square are.... Homozygous-Has two identical alleles TT or tt Homozygous Dominant: All dominant (TT) Homozygous Recessive: All recessive (tt) Heterozygous-Has two different alleles Tt

Built-In Quiz: Word Bank=Homozygous recessive, homozygous dominant, heterozygous

1)	2)	3)	4)
5)	6)	7)	8)
9)	10)	*11)	


Designing your Child Part 5 Lesson 4 Project


Please partner up with a member of the opposite sex. If numbers don't work than the remaining students can work solo. Determine the genotype by flipping a coin and looking at the letters on the left (Ex. H or h). Male flips coin and female flips coin. Record a capital letter if you flip a heads, or lower case letter if you flip a tails. Genotype will determine the phenotype.

Heads =Dominant (Capital Letter) Tails = Recessive (Lower Case Letter)

Trait	Male	Fem	Genotype	Phenotype	Phenotype	Phenotype
Hair (H or h)				HH – Lots of Hair	Hh- Average Hair	hh – Bald
Widows Peak				WW-Widows Peak	Ww-Widows Peak	ww- No Widows Preak
Ears (E or e)				EE – Big Ears	Ee – Average Ears	ee – Small ears
Earlobes				EE- Unattached	Ee- Unattached	ee-attached
Hairy Ears (J or j)				JJ – No hair on ears	Jj – No hair on ears	jj- hairy ears
Head (U or u)				UU – Wide head	Uu – Average head	uu – Small head
Nose (N or n)				NN – Large Nose	Nn – Average Nose	nn – Small nose
Eyes (E or e)				EE – Large eyes	Ee-Average eyes	ee – squinty eyes
Eye Color (B or b)				BB – Brown Eyes - If either parent has brown eyes	Bb - Brown Eyes - If either parent has brown eyes	bb – Blue eyes Only if both parents have blue eyes.
Eye Brows (B or b)				BB – Large bushy eyebrows	Bb – Average eyebrows	bb – Unibrow
Eye Brow Color				BB – Darker than hair	Bb – Same as hair	bb – lighter than hair
Eye Shape (E or e)				EE- Rounded Eyes	Ee-Rounded Eyes	ee- Almond shaped
Eye Distance (D or d)				DD- Close together	Dd – Average	dd – far apart
Eye Lashes (L or I)				LL – Long eyelashes	LI -Average	II – Short and stubby
Facial Hair (F or f)				FF – Lots of facial hair	Ff – No facial hair	ff – No facial hair
Lips (L or I)				LL – Huge lips	LI – Average lips	II – Small thin lips
Chin (C or c)				CC – Large square chin	Cc – Rounded chin	cc – Chubby chin
Dimples (D or d)				DD – Dimples	Dd – Dimples	dd – No dimples
Cleft Chin				CC-Cleft	Cc-Cleft	cc – No cleft
Eyesight (E or e)				EE – No glasses needed	Ee – No glasses needed	ee – Eyeglasses are needed.
Freckles (F or f)				FF – Lots of freckles	Ff – Lots of Freckles	ff – No freckles
Hair Color (H or h)				HH – Dark hair	Hh – Dark hair	hh – Light hair
Hitch hikers Thumb				TT-Hitch Hikers Thumb	Tt-Hitch Hikers Thumb	tt- No Hitch Hikers Thumb
Ear Wax (E or e)				EE- Wet ear wax	Ee-Wet ear wax	ee-Dry ear wax
Taste PTC Paper (P or p)				PP-Can taste PTC	Pp-Can taste PTC	pp-Cannot Taste PTC
Teeth (T or t)				TT- No gap in teeth	Tt – No Gap in teeth	tt- gap in front teeth
Color Blindness (C or c)				CC-No color blindness	Cc – No color blindness	cc – Mild color blindness (green / blue)

To determine gender – Male roles a coin as only the male can determine the sex of the child. If the male roles a heads than the offspring is a boy as heads will represent the Y chromosome.

What would happen if we went back to the pet store and got two homozygous dominant black gerbils over four generations? What would the color be? Explain.

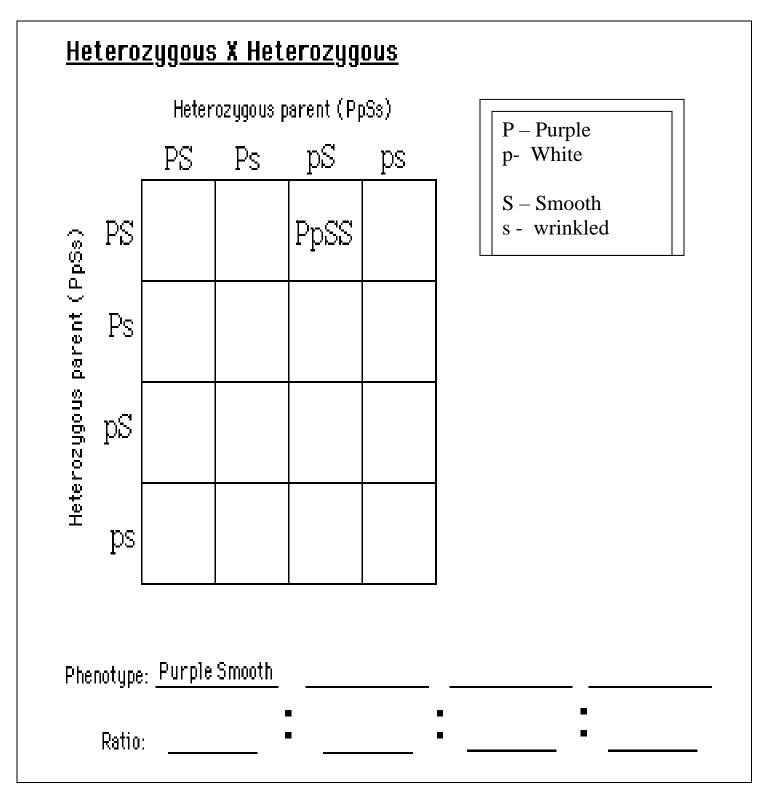
Part 5 Lesson 6 and 7 Dihybrid Crosses Dihybrid Cross: A cross that involves _____ sets of characteristics. Please complete the dihybrid cross below and record the probability of the outcomes at the bottom. The husband is BGbg and the wife is the same BGbg. (BGbg x BGbg). Use a brown, green, and blue crayon to assist you. B=Brown Eyes (Dominant) G=Green Eyes b= Blue Eyes Gametes BG bG Bg bg Female \rightarrow Male BG Bg bG bg

What's the probability that the offspring will have...

Please complete the dihybrid cross below and record the probability of the outcomes at the bottom. The Male Guinea pig is BbSs and the female is the same BbSs. (BbSs x BbSs). A brown and black crayon will help.

B=Black fur	b=brown fur	S=Short fur	s=long fur	
Gametes Female → Male↓	BS	Bs	bS	bs
BS				

How many Guinea Pigs were?:


Black and Short	Black and Long
Brown and Short	Brown and Long

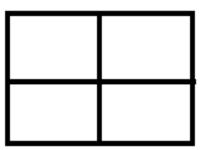
12

12

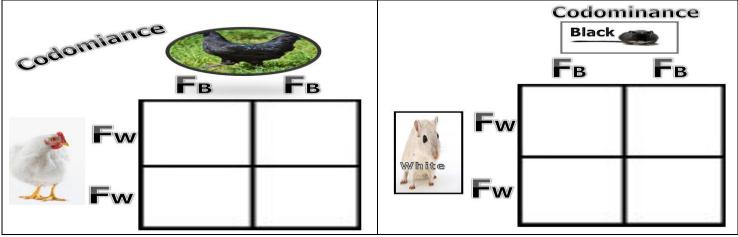
Please complete the dihybrid cross below and record the probability of the outcomes in the ratio part at the bottom. Purple is dominant over white, and Smooth is dominant over wrinkled.

PPSS = Purple Smooth, PpSs = Purple Smooth, PPss = Purple wrinkled, ppSs= White Smooth, and ppss = White Wrinkled

Part 5 Lesson 7 Triple Cross

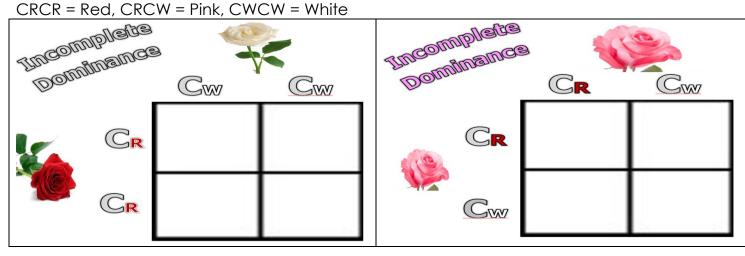

Phenotypes:	Dominant S, Y, A - normal SSYYAA SSYVAa	- albinos ^{SsYyaa} SSYY <u>aa</u>	- anerythristic SSyyAa SSyyAa	- striped ssYYAA ssYyAa	- snow Ssyyaa	- striped-albino	- striped-anery	- striped-snow
sya								
svA								_
sYa								
sYA								
Sya								
SvA								
SYa								
SYA								
CYA CYA	SYa	SyA	Sya	sYA	sYa	syA	sya	

SsYyAa x SsYyAa


Part 5 Lesson 8 Codominance and Incomplete Dominance

Codominance is a relationship among _____ where both alleles contribute to the _____ of the heterozygote.

Determine the phenotype and genotype of the offspring if the mother is bald Xb Xb as well as the father (XB Yb). Illustrate the probability of their children having pattern baldness using Punnett square. bb=bald

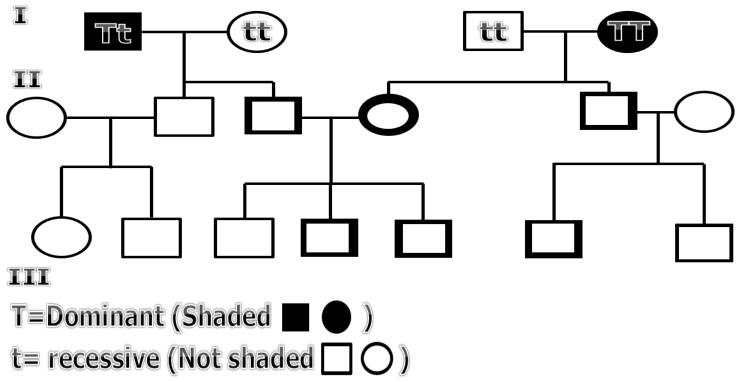


Please complete the Punnett Square Below? What's the probability that the offspring will be White Chickens FwFw, Black Chickens FbFb, or Checkered Chickens FbFw? Then figure out gerbils again.

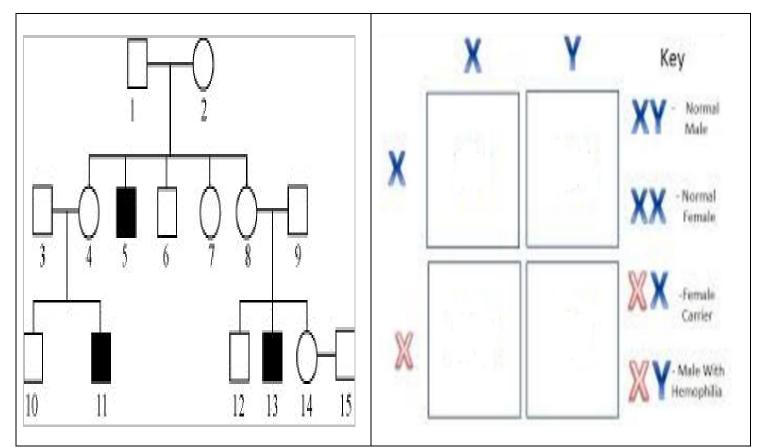
Incomplete Dominance: One allele for a specific trait is not completely _____

over the other. What type of roses will result below?

Complete as described in the video in the slideshow with the "Fluffys" Need, blue, yellow and green marker, crayon, or colored pencil.


Genotype	Complete Dominance	Codominance	Incomplete dominance
СвСв			
СүСү			
CBCY			

Mendel's Laws of Heredity:


- 1) The Law of Segregation: Each inherited _______ is defined by a ______pair. Parental genes are randomly separated to the sex cells so that sex cells contain only ______gene of the pair. Offspring therefore inherit one genetic _______from each parent when sex cells unite in f
- each parent when sex cells unite in <u>f</u>_____.
 2) The Law of Independent Assortment: ______ for different traits are sorted ______ from one another so that the inheritance of one trait is not on the inheritance of another.
- 3) The Law of Dominance: An organism with alternate forms of a gene will express the form that is ______.
- Part 5 Lesson 9 Pedigree's and Lesson 10 Wrap-Up

Pedigree Chart: A diagram that shows the occurrence and appearance or p______ of a particular g______ or organism and its ancestors from one generation to the next.

Please complete the Pedigree below as we do it in class. Color Blindness

Hemophilia is a sex-linked recessive disorder of humans in which the ability of the blood to clot is severely reduced. The pedigree chart below shows the inheritance of hemophilia in a family. Study the patterns of inheritance and answer the questions below. \Box = male, o= female. \blacksquare =affected male,

- ◊ Which numbers are females? _
- ◊ Which numbers are males?____
- \diamond How many children did 1 and 2 have? _
- ◊ Which child from 1 and 2 had hemophilia?_
- ◊ Does number 7 have hemophilia?_
- \diamond How many children did 8 and 9 have?_
- \diamond Which children (4,5,6,7,8) are carries of hemophilia? Shade them with \bigcirc
- \diamond Was 1 or 2 a carrier of hemophilia? Shade which one.
- \diamond Is hemophilia more common in men or women?_
- \diamond Are women more often carriers or affected with hemophilia?_
- ◊ Number 14 and 15 have a male child with hemophilia. Was number 14 a carrier?
- ◊ What was the probability that they (14 and 15) would have a child with hemophilia? ◊ Complete the Punnett Square above to find out? _____% chance

ALLELES, ASSORTMENT, CODOMINANCE, DARWIN, DOMINANCE, GENES, HEREDITY, HETEROZYGOUS, HOMOZYGOUS, INCOMPLETE, MENDEL, MODIFICATION, PEA, PEDIGREE, PUNNETT, PUREBRED, REPRODUCTION, SEGREGATION, SELECTIVE, STEVENS, TWO, DOMINANT, GENOTYPE, PHENOTYPE, POLYGENIC, PROBABILITY, RECESSIVE, SEGREGATION

Across

1. Always produce offspring with the same trait as the parent.

4. An organism's _____ is its physical appearance or its visible traits.

8. Most traits are _____, controlled by one or more genes with six alleles.

10. Genetics deals heavily with _____, or the likelihood that a particular event will occur.

12. Descent with : The passing on of traits from parent organisms to their offspring. Offspring will display small changes.

14. The intentional breeding of organisms with desirable traits in an attempt to produce offspring with similar desirable

characteristics or with improved traits.

17. Law of _____ (Heredity), states that allele pairs separate or segregate during gamete formation, and randomly unite at fertilization.

20. An organism's _____ is its genetic makeup, or allele combinations.

21. Mendel work with these type of plants22. Today's scientists call the factors that control traits _____.

23. The Law of _____: An organism with alternate forms of a gene will express the form that is dominant.

24. _____ Square: A diagram that is used to determine the outcome of a particular cross (Probability / likelihood that that particular event / cross will occur)

25. This has two different alleles

27. The Father of Modern Genetics, First name Gregor

28. This has two of the same alleles

Down

2. Mendel knew that the female contributes one factor, while the male contributes the other factor in sexual _____.

3. _____ Dominance: One allele for a specific trait is not completely dominant over the other.

5. ______ found that nature is just like selective breeding but is done automatically.
The environment decides who lives and dies.

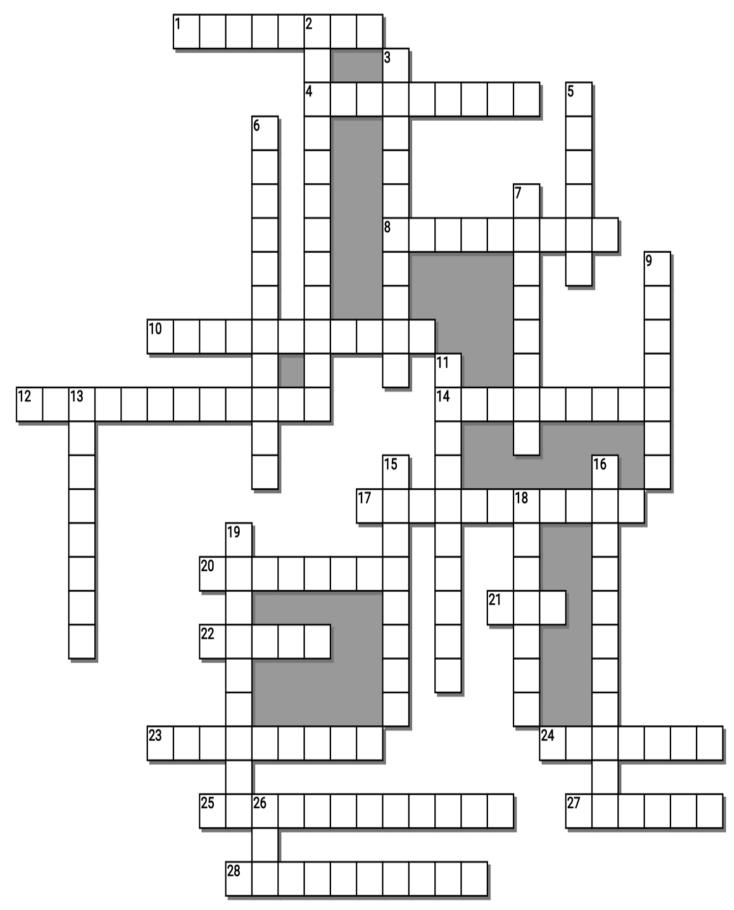
6. The Law of ______: Each inherited trait is defined by a gene pair. Parental genes are randomly seperated to the sex cells so that sex cells contain only one gene of the pair. Offspring therefore inherit one genetic allele from each parent when sex cells unite in fertilization.

7. A diagram that shows the occurrence and appearance or phenotype of a particular gene or organism and its ancestors from one generation to the next

9. Biologist Nettie _____1905 Discovered the X and Y chromosome and answered the thousand year old question of why boys become boys and girls become girls.

11. The Law of Independent _____: Genes for different traits are sorted separately from one another so that the inheritance of one trait is not dependent on the inheritance of another.

13. A ______ allele is one whose trait always shows up in the organism when the allele is present.


15. When you pass traits from parents to offspring

16. A relationship among alleles where both alleles contribute to the phenotype of the heterozygote.

18. Scientists call the different forms of gene_____

19. A ______ allele is covered up when the dominant allele is with it. A hybrid has two different alleles.

26. Dihybrid Cross: A cross that involves _____ sets of characteristics.

Genetics Review GAME

1-20 = 5 pts Lesson 11 Review Game

*20-*25 * = Bonus + 1 pt,

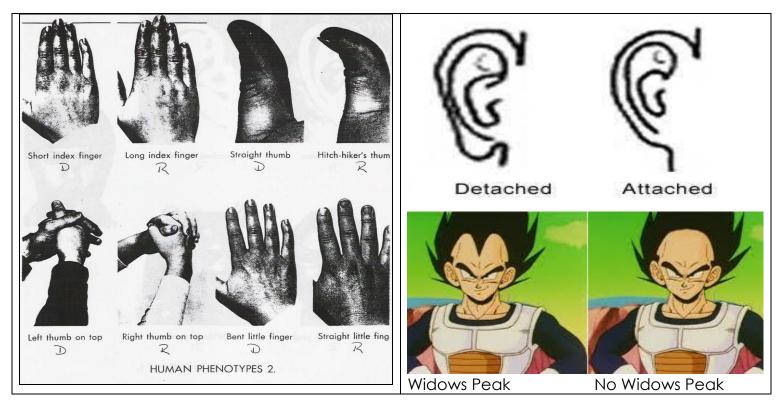
(Secretly write owl in correct space +1 pt)

Final Question = 5 pt wager

MEN DULL	ΤΥΡΟ	HOT LOTTO	THINK INSIDE THE BOX	FAMILY TIES Bonus round 1 pt each
1)	6)	11)	16)	*21)
2)	7)	12)	17)	*22)
3)	8)	13)	18)	*23)
4)	9)	14)	19)	*24)
5)	10)	15)	20)	*25)

Final Question Wager ____ /5_ Answer: _____

Copyright 2024 SlideSpark .LLC


Score ____ / 100

Part 5 Genetics

Name: Due:

Part 5 Lesson 1 Intro to Genetics and Mendel

Circle what human phenotypes you display? Answers will vary based on student phenotypes

Can you mark your bingo sheet? Any Bingo's? First one to say BINGO may get a prize. Answers will vary based on student phenotypes

в	1	N	G	0
Dimples	No Freckles	I have a different trait than the person sitting next to me	Alergies	Hitch hikers thumb
No Finger Hair	Cleft chin	Trait in common - Left	No Dimples	Widows Peak
Finger Hair	Curly hair	Free!	Shared trait - Left	I cross my right thumb over my left when I clasp my hands
No Dimples	Second Toe Longest	Can not roll tongue	Right Handed	First Toe Longest
No finger Hair	Straight hairline	Trait in common - Right	Detached earlobes	I cross my left thumb over my right when I clasp my hands

Please record some information about the person below

Gregor Mendel is best known for his work with his pea plants in the abbey gardens. He spent about seven years planting, breeding and cultivating pea plants in an experimental part of the abbey garden that was started by the previous abbot. Through meticulous record-keeping, Mendel's experiments with pea plants became the basis for modern genetics.

Mendel chose pea plants as his experimental plant for many reasons. First of all, pea plants take very little outside care and grow quickly. They also have both male and female reproductive parts, so they can either cross-pollinate or self-pollinate. Perhaps most importantly, pea plants seem to show one of only two variations of many characteristics. This made the data much more clear-cut and easier to work with.

Mendel's first experiments focused on one trait at a time, and on gathering data on the variations present for several generations. These were called monohybrid experiments. He studied a total of seven characteristics. His findings showed that there were some variations that were more likely to show up over the other variations. When he bred purebred peas of differing variations, he found that in the next generation of pea plants one of the variations disappeared. When that generation was left to self-pollinate, the next generation showed a 3 to 1 ratio of the variations. He called the one that seemed to be missing from the first filial generation "recessive" and the other "dominant," since it seemed to hide the other characteristic.

These observations led Mendel to the law of segregation. He proposed that each characteristic was controlled by two alleles, one from the "mother" and one from the "father" plant. The offspring would show the variation it is coded for by the dominance of the alleles. If there is no dominant allele present, then the offspring shows the characteristic of the recessive allele. These alleles are passed down randomly during fertilization.

Scoville, H. (2019, August 17). Gregor Mendel's unique experiments made him the father of Genetics. ThoughtCo. Retrieved July 20, 2022, from https://www.thoughtco.com/aboutgregor-mendel-1224841

Gregor Mendel: The father of modern genetics. He counted his results and kept "almost too perfect" statistical notes, much like your science journal. The year was 1851, a young priest from Vienna studied mathematics and science at the university. Upon finishing, he went back to priesthood and tended a garden outside of the monastery. He worked with pea plants and became curious as to why some pea plants had different characteristics or <u>Traits</u>.

., .

23

Selective Breeding: The intentional breeding of organisms with desirable traits in an attempt to produce offspring with similar desirable characteristics or with improved traits.

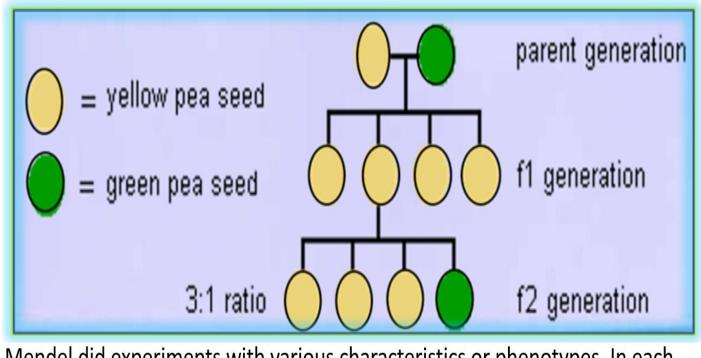
Descent with Modification: The passing on of traits from parent organisms to their offspring. Offspring will display small changes.

Darwin found that nature is just like selective breeding but is done automatically.

The environment decides who lives and dies.

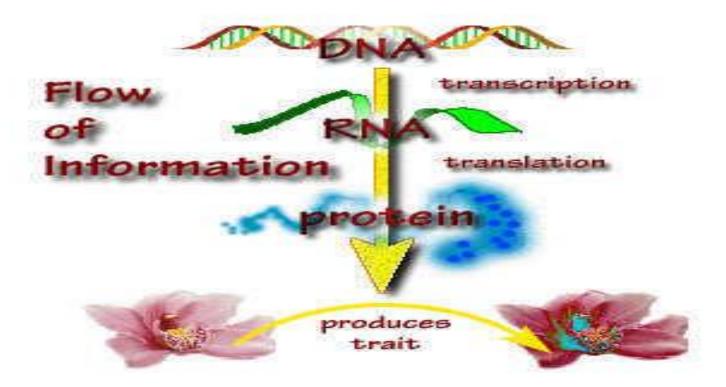
Part 5 Lesson 2 Alleles, Mendel and More terms

Mendel seemed to notice that pea plants tended to pass traits from parents to offspring, which is called heredity.

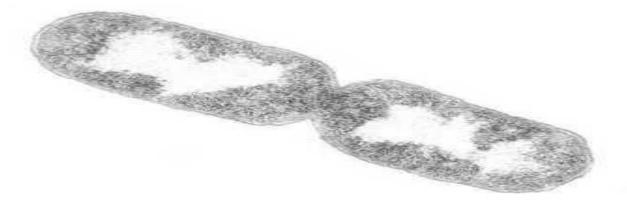

Law of segregation (Heredity), states that allele pairs separate or segregate during gamete formation, and randomly unite at fertilization.

- A gene can exist in more than one form.
- Organisms inherit two alleles for each trait.
- When gametes are produced (by meiosis), allele pairs seperate leaving each cell with a single allele for each trait.

Mendel started doing experiments with <mark>purebred</mark> plants, or plants that always produce offspring with the same trait as the parent. For example, short pea plants always produce short offspring. Mendel then decided to cross short pea plants with tall pea plants.


What do you think Mendel got when he bred	What do you think Mendel got when he bred
tall and short? Answers will vary	all of thje tall offspring?
A.) Medium sized plants.	A.) Medium sized plants.
B.) Half tall, and half short.	B.) Most tall and some short.
C.) All Short	C.) All Short
D.) All Tall	D.) All Tall
E.) They won't germinate	E.) They won't germinate.

Please write about Gregor Mendel and his research with pea plants and early genetics using this diagram. What is so significant when comparing the f1 and f2 generation?


Mendel did experiments with various characteristics or phenotypes. In each case, one value of the characteristic disappeared in the F1 plants and then showed up again in the F2 plants. 75% percent of F2 plants had one value of the characteristic and 25% percent had the other value. Based on these observations, Mendel formulated his first law of inheritance. This law is called the law of segregation. It states that there are two factors controlling a given characteristic, one of which is dominant, and the other which is recessive. The factors separate and go to different gamete when a parent reproduces.

An organism's <mark>phenotype</mark> is its physical appearance or its visible traits. An organism's genotype is its genetic makeup, or allele combinations.

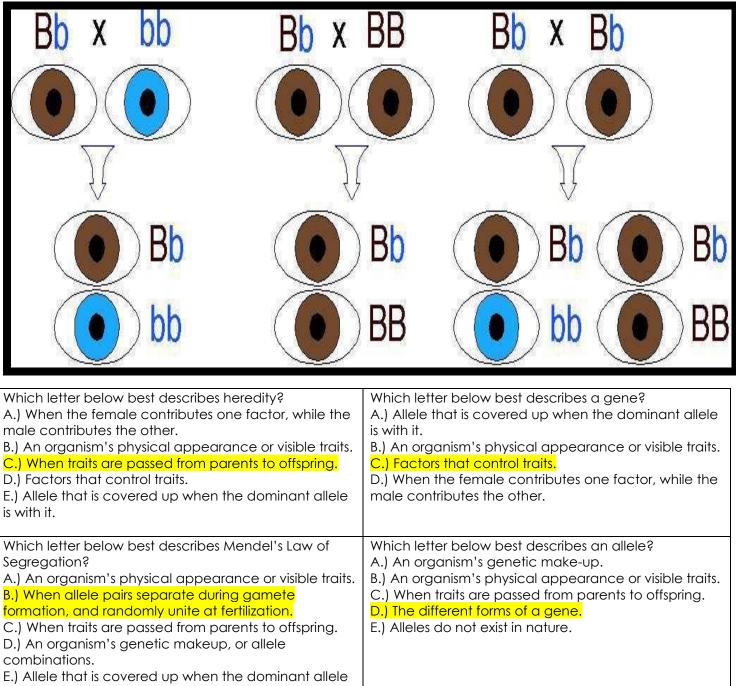
From all of Mendel's' results, he reasoned that individual factors must control the inheritance of traits in peas. Mendel knew that the female contributes one factor, while the male contributes the other factor in sexual reproduction.

What type of reproduction are these bacteria doing? Binary Fission: The process by which a bacterium multiplies by splitting in two. In asexual reproduction, one individual produces offspring that are genetically identical to itself.

Today's scientists call the factors that control traits genes. Scientists call the different forms of gene alleles.

Part 5 Lesson 3 Alleles

A dominant allele is one whose trait always shows up in the organism when the allele is present. A recessive allele is covered up when the dominant allele is with it. A hybrid has two different alleles.


Most traits are polygenic, controlled by one or more genes with six alleles.

- Height, eye color, skin color, are all controlled by multiple alleles.
- T = Dominant

is with it.

- t = Recessive
 - TT = Two dominant
 - tt = Two recessive
 - Tt = One dominant, one recessive

Please sketch in the correct eye Color if Brown color (B) is dominant and (b) blue color is recessive.

Mendel's Laws of Heredity:

- 1) The Law of Segregation: Each inherited trait is defined by a gene pair. Parental genes are randomly separated to the sex cells so that sex cells contain only one gene of the pair. Offspring therefore inherit one genetic allele from each parent when sex cells unite in fertilization.
- 2) The Law of Independent Assortment: Genes for different traits are sorted separately from one another so that the inheritance of one trait is not dependent on the inheritance of another.
- 3) The Law of Dominance: An organism with alternate forms of a gene will express the form that is dominant.

Most traits are polygenic, controlled by one or more genes with six alleles.

- Height, eye color, skin color, are all controlled by multiple alleles.

Punnett Square: A diagram that is used to determine the outcome of a particular cross (Probability / likelihood that that particular event / cross will occur)

Please use complete the Punnett square and then describe which gender controls the sex of the XY child in humans? Please respond on the lines Male below. Answer! The male, he is the only one who carries the Y chromosome. If he gives the X it is female, if х he gives the Y it is male. The woman is XX and can XX Female Male only give the X XX Female XY хх Female Male

Sex Chromosome: A chromosome involved with determining the sex of an organism, typically one of two kinds. (X,Y)

Biologist Nettie Stevens1905 Discovered the X and Y chromosome and answered the thousand year old question of why boys become boys and girls become girls.

Part 5 Lesson 4 Probability and Punnett Squares

Genetics deals heavily with probability, or the likelihood that a particular event will occur.

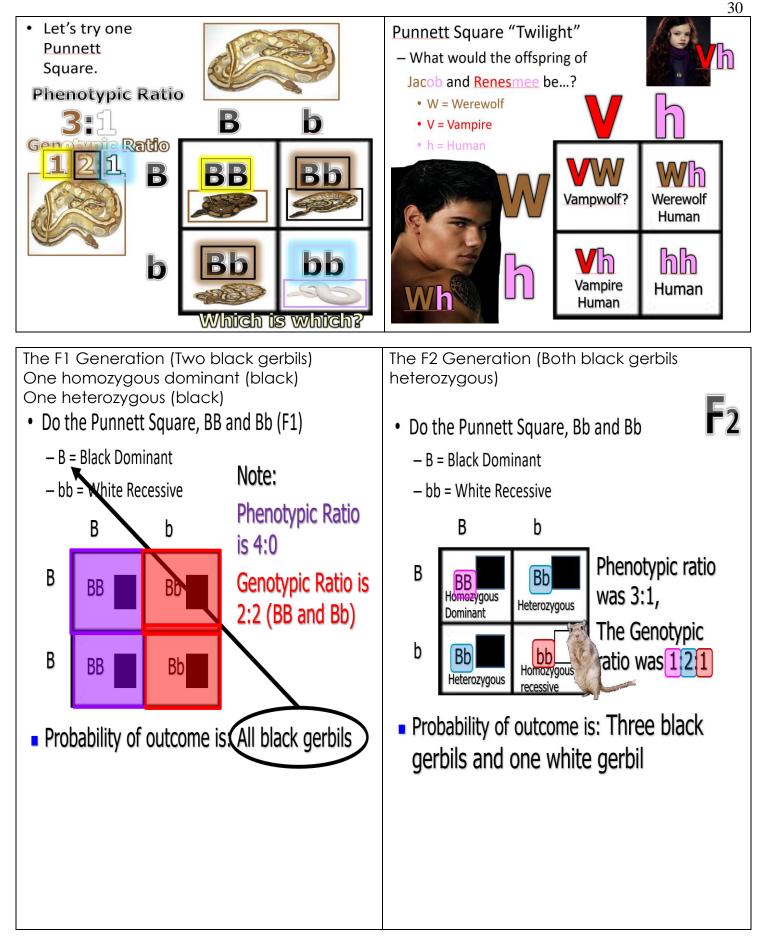
Please record which boxes in the Punnett Square are.... Homozygous- Has two identical alleles Π or tt Homozygous Dominant: All dominant (Π) Homozygous Recessive: All recessive (tt) Heterozygous- Has two different alleles Tt

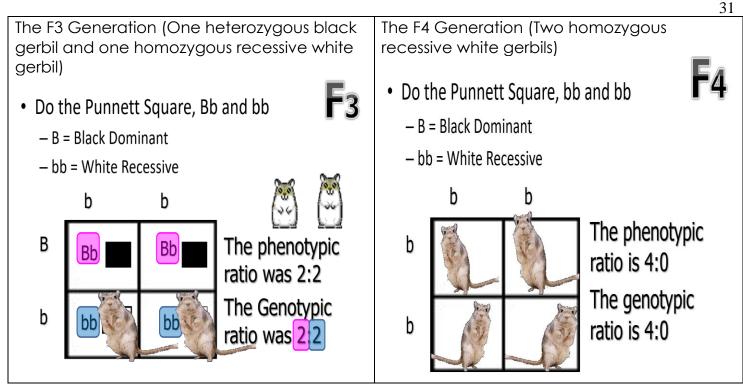
	G	g		Α	а	28
G	GG	Gg	a	Aa	aa	
g	Gg	gg	a	Aa	aa	

Built-In Quiz: Word Bank=Homozygous recessive, homozygous dominant, heterozygous

		, nemez, gees aemina	,,,,
1) Homozygous	2) Homozygous	 Heterozygous 	4) Heterozygous
<mark>Dominant</mark>	Recessive		
5) Homozygous	<mark>6) Heterozygous</mark>	7) Homozygous	8) Homozygous
<mark>Dominant</mark>		Recessive	Dominant
9) Heterozygous and	10) Homozygous	*11) Princess Bride	
Homozygous	Recessive and		
<mark>Dminant</mark>	Heterozygous		

Designing your Child Part 5 Lesson 4 Project


Please partner up with a member of the opposite sex. If numbers don't work than the remaining students can work solo. Determine the genotype by flipping a coin and looking at the letters on the left (Ex. H or h). Male flips coin and female flips coin. Record a capital letter if you flip a heads, or lower case letter if you flip a tails. Genotype will determine the phenotype.


Trait	Male	Fem	Genotype	Phenotype	Phenotype	Phenotype
Hair (H or h)	Н	Н	Hh	HH – Lots of Hair	<mark>Hh- Average</mark> Hair	hh – Bald
Widows Peak	W	W	WW	WW-Widows	Ww-Widows	www-No Widows
				Peak	Peak	Preak
Ears (E or e)	е	е	ee	EE – Big Ears	Ee – Average Ears	<mark>ee – Small ears</mark>
Earlobes				EE- Unattached	Ee-Unattached	ee-attached
Hairy Ears (J or j)				JJ – No hair on ears	Jj – No hair on ears	jj- hairy ears
Head (U or u)				UU – Wide head	Uu – Average head	uu – Small head
Nose (N or n)				NN – Large Nose	Nn – Average Nose	nn – Small nose
Eyes (E or e)				EE – Large eyes	Ee–Average eyes	ee – squinty eyes
Eye Color (B or b)				BB – Brown Eyes - If either parent has brown eyes	Bb - Brown Eyes - If either parent has brown eyes	bb – Blue eyes Only if both parents have blue eyes.
Eye Brows (B or b)				BB – Large bushy eyebrows	Bb – Average eyebrows	bb – Unibrow
Eye Brow Color				BB – Darker than hair	Bb – Same as hair	Bb – lighter than hair
Eye Shape (E or e)				EE- Rounded Eyes	Ee-Rounded Eyes	ee- Almond shaped
Eye Distance (D or d)				DD- Close together	Dd – Average	Dd – far apart
Eye Lashes (L or I)				LL – Long eyelashes	LI -Average	II – Short and stubby
Facial Hair (F or f)				FF – Lots of facial hair	Ff – No facial hair	ff – No facial hair
Lips (L or I)				LL – Huge lips	LI – Average lips	II – Small thin lips
Chin (C or c)				CC – Large square chin	Cc – Rounded chin	cc – Chubby chin
Dimples (D or d)				DD – Dimples	Dd – Dimples	Dd – No dimples
Cleft Chin				CC-Cleft	Cc-Cleft	cc – No cleft
Eyesight (E or e)				EE – No glasses needed	Ee – No glasses needed	ee – Eyeglasses are needed.
Freckles (F or f)		1		FF – Lots of freckles	Ff – Lots of Freckles	ff – No freckles
Hair Color (H or h)		1		HH – Dark hair	Hh – Dark hair	hh – Light hair
Hitch hikers Thumb				TT-Hitch Hikers Thumb	Tt-Hitch Hikers Thumb	tt- No Hitch Hikers Thumb
Ear Wax (E or e)		t		EE- Wet ear wax	Ee-Wet ear wax	ee-Dry ear wax
Taste PTC Paper (P or p)		1		PP-Can taste PTC	Pp-Can taste PTC	pp-Cannot Taste PTC
Teeth (T or t)				TT- No gap in teeth	Tt – No Gap in teeth	tt- gap in front teeth
Color Blindness (C or c)				CC-No color blindness	Cc – No color blindness	cc – Mild color blindness (green / blue)

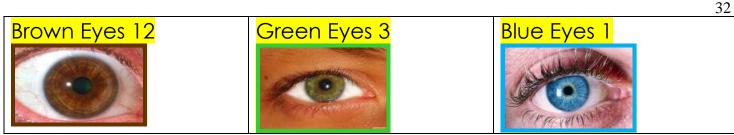
Heads =Dominant (Capital Letter) Tails = Recessive (Lower Case Letter)

To determine gender – Male roles a coin as only the male can determine the sex of the child. If the male roles a heads than the offspring is a boy as heads will represent the Y chromosome. The Gender is ______ The Name is ______

Please complete the Punnett Squares below. Part 5 Lesson 4 Punnett Squares

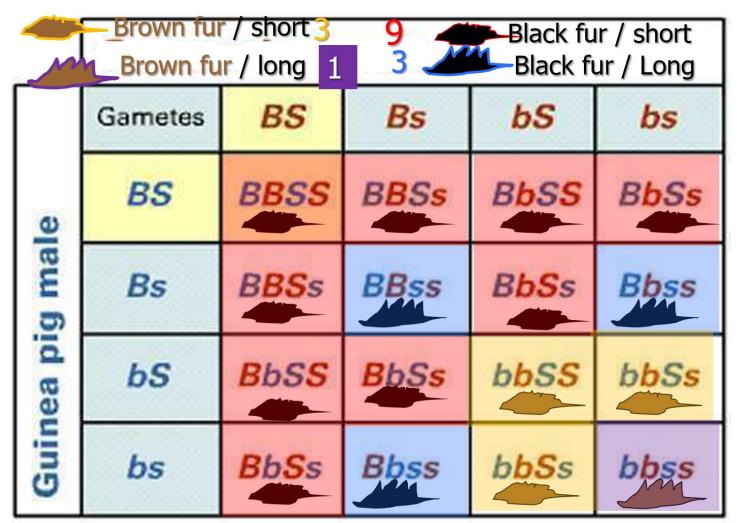
What would happen if we went back to the pet store and got two homozygous dominant black gerbils over four generations? What would the color be? Explain. All will be black because the two gerbils were BB homozygous dominant. If we started with black purebred offspring, they would always be black

Part 5 Lesson 6 and 7 Dihybrid Crosses

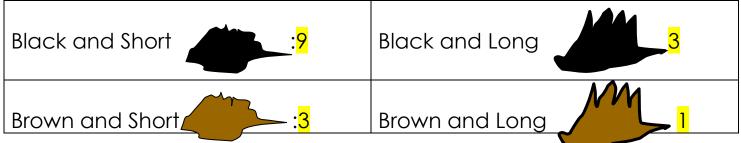

Dihybrid Cross: A cross that involves two sets of characteristics.

Please complete the dihybrid cross below and record the probability of the outcomes at the bottom. The husband is BGbg and the wife is the same BGbg. (BGbg x BGbg). Use a brown, green, and blue crayon to assist you.

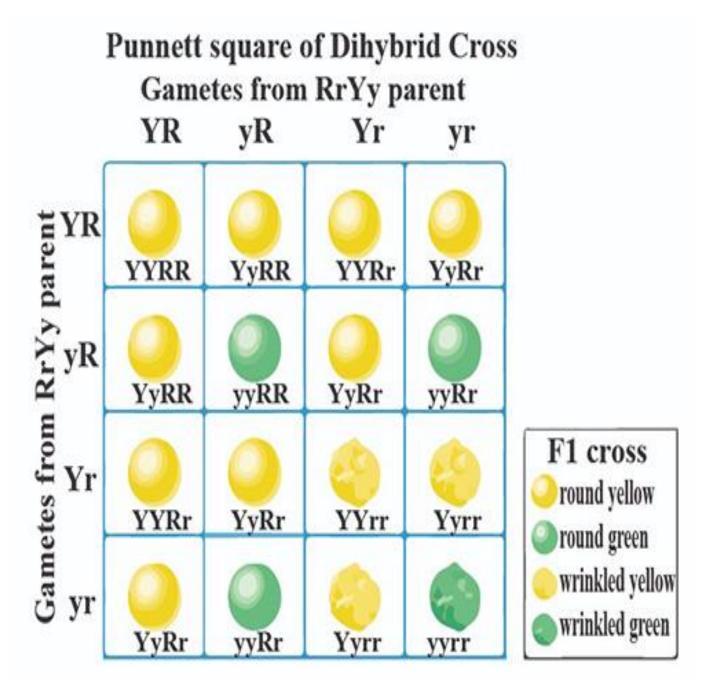
B=Brown Eyes (Dominant) G=Green Eyes b= Blue Eyes


	BG	Bg	bG	bg
BG	BBGG	BBGg	BbGG	BbGg
Bg	BBGg 「」	BBgg	BbGg	Bbgg
bG	BbGG	BbGg	bbGG	bbGg
bg	BbGg	Bbgg	bbGg	bbgg

What's the probability that the offspring will have...



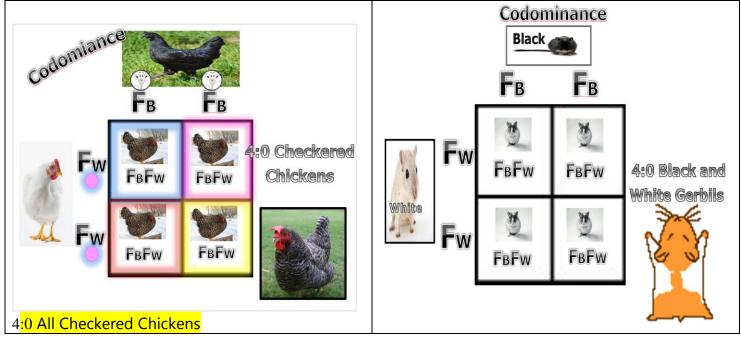
Please complete the dihybrid cross below and record the probability of the outcomes at the bottom. The Male Guinea pig is BbSs and the female is the same BbSs. (BbSs x BbSs). A brown and black crayon will help.


B=Black fur b=brown fur S=Short fur s=long fur

How many Guinea Pigs were?:

Please complete the dihybrid cross below and record the probability of the outcomes in the ratio part at the bottom. Purple is dominant over white, and Smooth is dominant over wrinkled.

9 Yellow Rounded, 3 Round Green, 3 Yellow Wrinkled, 1 Green Wrinkled


Part 5 Lesson 7 Triple Cross

			_	triple-het x triple-het	het x	trip	e-het	tcross	s		
					<u>SsYy</u>	<u>SsYyAa × SsYyAa</u>	sYyAa		2		
	SYA	SYa	SyA	Sya	sYA	sYa	syA	sya		Pha	Phenotynes.
SYA	*		*	1	1	*	*		~	out	Out of 64 births.
SYa	*	ê	*	Ż	K	ê	*	é	27 -		- normal SSYYAA
SyA	*			A	*	*		A.	9 -	·	- albinos SSYYaa
Sya	1	Ż	X	and the second s	*	Ż	X	- Harris	9 -		- anerythristic SSyyAa
sYA	*	ħ			A P	A P			9 -		- striped ssYYAA
sYa	1	Ż	1	È		AR .	A D		3-		- snow Ssyvaa
syA							(FT)	87	<u>ي</u>		- striped-albino
sya	*	Ż	X				87)	(A)	3 -		- striped-anery ssyyAa
									- <u>-</u> -		- striped-snow ssyyaa

Part 5 Lesson 8 Codominance and Incomplete Dominance

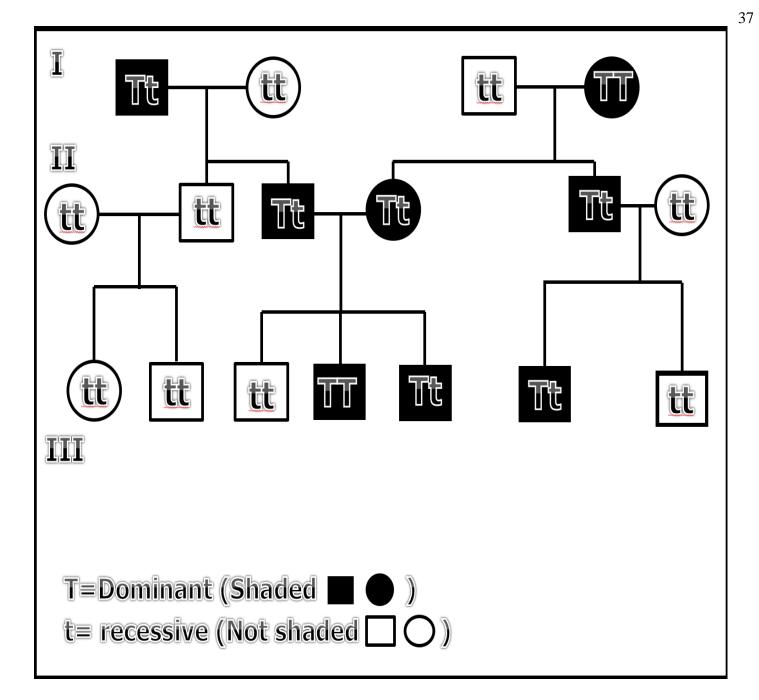
Codominance is a relationship among alleles where both alleles contribute to the phenotype of the heterozygote.

Please complete the Punnett Square Below? What's the probability that the offspring will be White Chickens FwFw, Black Chickens FbFb, or Checkered Chickens FbFw? Then figure out gerbils again.

Incomplete Dominance: One allele for a specific trait is not completely dominant over the other. What type of roses will result below? CRCR = Red, CRCW = Pink, CWCW = White

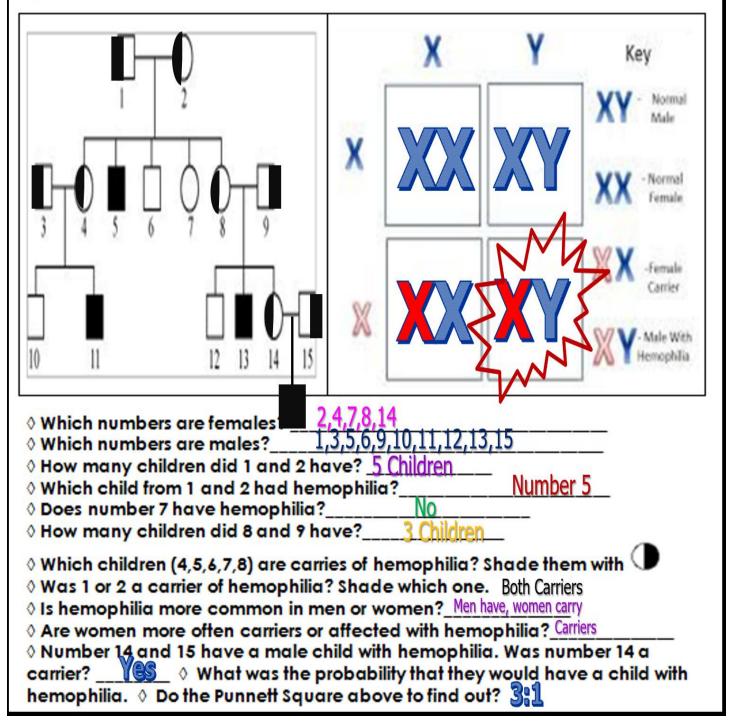
Complete as described in the video in the slideshow with the "Fluffys" Need, blue, yellow and green marker, crayon, or colored pencil.

Complete as described in the vide	eo in the slideshow with the "Fluffys"	Need, blue, yellow and green mark	er, crayon, or colored pencil.
Genotype	Complete Dominance	Incomplete Dominance	Codominance
CBCB			
СүСү			
CBCY			


Mendel's Laws of Heredity:

- 1) The Law of Segregation: Each inherited trait is defined by a gene pair. Parental genes are randomly separated to the sex cells so that sex cells contain only one gene of the pair. Offspring therefore inherit one genetic allele from each parent when sex cells unite in fertilization.
- 2) The Law of Independent Assortment: Genes for different traits are sorted separately from one another so that the inheritance of one trait is not dependent on the inheritance of another.
- 3) The Law of Dominance: An organism with alternate forms of a gene will express the form that is dominant.

Part 5 Lesson 9 Pedigree's and Lesson 10 Wrap-Up


Pedigree Chart: A diagram that shows the occurrence and appearance or phenotype of a particular gene or organism and its ancestors from one generation to the next.

Please complete the Pedigree below as we do it in class. Color Blindness

Hemophilia is a sex-linked recessive disorder of humans in which the ability of the blood to clot is severely reduced. The pedigree chart below shows the inheritance of hemophilia in a family. Study the patterns of inheritance and answer the questions below. \Box = male, o= female. \blacksquare =affected male,

Hemophilia is a sex-linked recessive disorder of humans in which the ability of the blood to clot is severely reduced. The pedigree chart below shows the inheritance of hemophilia in a family. Study the patterns of inheritance and answer the questions below. \Box = male, o= female. = affected male,

ALLELES, ASSORTMENT, CODOMINANCE, DARWIN, DOMINANCE, GENES, HEREDITY, HETEROZYGOUS, HOMOZYGOUS, INCOMPLETE, MENDEL, MODIFICATION, PEA, PEDIGREE, PUNNETT, PUREBRED, REPRODUCTION, SEGREGATION, SELECTIVE, STEVENS, TWO, DOMINANT, GENOTYPE, PHENOTYPE, POLYGENIC, PROBABILITY, RECESSIVE, SEGREGATION

Across

1. Always produce offspring with the same trait as the parent.

4. An organism's _____ is its physical appearance or its visible traits.

8. Most traits are _____, controlled by one or more genes with six alleles.

10. Genetics deals heavily with _____, or the likelihood that a particular event will occur.

12. Descent with : The passing on of traits from parent organisms to their offspring. Offspring will display small changes.

14. The intentional breeding of organisms with desirable traits in an attempt to produce offspring with similar desirable

characteristics or with improved traits.

17. Law of ______ (Heredity), states that allele pairs separate or segregate during gamete formation, and randomly unite at fertilization.

20. An organism's _____ is its genetic makeup, or allele combinations.

21. Mendel work with these type of plants22. Today's scientists call the factors that control traits _____.

23. The Law of _____: An organism with alternate forms of a gene will express the form that is dominant.

24. _____ Square: A diagram that is used to determine the outcome of a particular cross (Probability / likelihood that that particular event / cross will occur)

25. This has two different alleles

27. The Father of Modern Genetics, First name Gregor

28. This has two of the same alleles

Down

2. Mendel knew that the female contributes one factor, while the male contributes the other factor in sexual _____.

3. _____ Dominance: One allele for a specific trait is not completely dominant over the other.

5. ______ found that nature is just like selective breeding but is done automatically.
The environment decides who lives and dies.

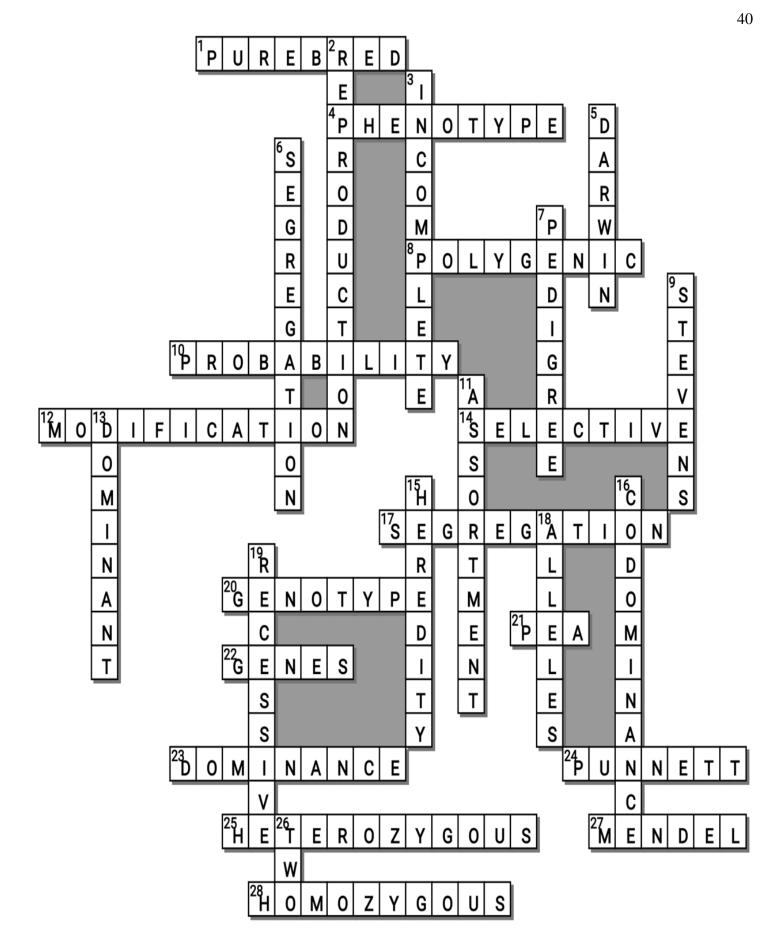
6. The Law of ______: Each inherited trait is defined by a gene pair. Parental genes are randomly seperated to the sex cells so that sex cells contain only one gene of the pair. Offspring therefore inherit one genetic allele from each parent when sex cells unite in fertilization.

7. A diagram that shows the occurrence and appearance or phenotype of a particular gene or organism and its ancestors from one generation to the next

9. Biologist Nettie _____1905 Discovered the X and Y chromosome and answered the thousand year old question of why boys become boys and girls become girls.

11. The Law of Independent _____: Genes for different traits are sorted separately from one another so that the inheritance of one trait is not dependent on the inheritance of another.

13. A ______ allele is one whose trait always shows up in the organism when the allele is present.


15. When you pass traits from parents to offspring

16. A relationship among alleles where both alleles contribute to the phenotype of the heterozygote.

18. Scientists call the different forms of gene_____

19. A ______ allele is covered up when the dominant allele is with it. A hybrid has two different alleles.

26. Dihybrid Cross: A cross that involves _____ sets of characteristics.

Genetics Review GAME

1-20 = 5 pts Lesson 11 Review Game *20-*25 * = Bonus + 1 pt,

(Secretly write owl in correct space +1 pt) Final Question = 5 pt wager

Score ____ / 100

MEN DULL	TYPO	HOT LOTTO	THINK INSIDE THE BOX	FAMILY TIES Bonus round 1 pt each
1)	6)	11)	16)	*21)
<mark>Gregor</mark> Mendel	<mark>Genotype</mark>	<mark>Punnett</mark> Square	3:1 Tall to Short	<mark>Sheen, Martin</mark> and Charlie
2)	7)	12)	17)	*22)
<mark>Letter D</mark> Heredity	DNA->RNA-> Protein	<mark>XY = Male</mark>	2:2 Tall to Short	<mark>Minnesota</mark> Twins
3)	8)	13)	18)	*23)
<mark>Letter B</mark> Pure Bred (Owl+1pt)	Genes	Probability	C and B are Brown with Red Eyes, D is black with red Eyes, E is Black with Brown Eyes	Williams Sisters Serena and Venus
4)	9)	14)	19)	*24)
3:1 Ratio 3 Tall, 1 Short	<mark>Letter B</mark> Dominant Allele	Letter E Homozygous Dominant and Heterozygous	Codominance	Billy Ray and Miley Cyrus
⁵⁾ Phenotype	10) <mark>Recessive</mark> Allele	15) <mark>Sexual</mark> Reproduction	²⁰⁾ Letter C Incomplete Dominance	*25) <mark>JFK and Ted</mark> Kennedy

Final Question Wager <u>/5</u> Answer: <u>2:2 ratio</u>

Copyright 2024 SlideSpark .LLC