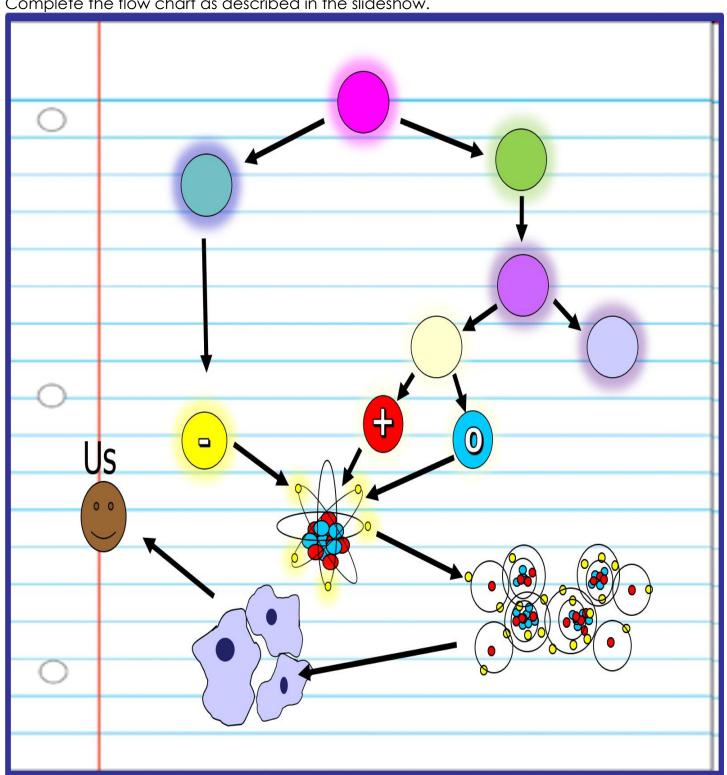
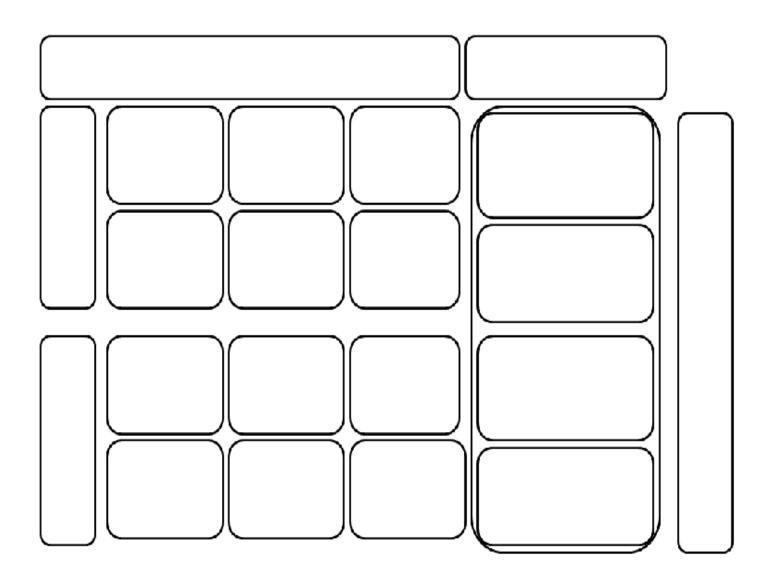
Part 2 Inside the Atom


Name: Due Date:

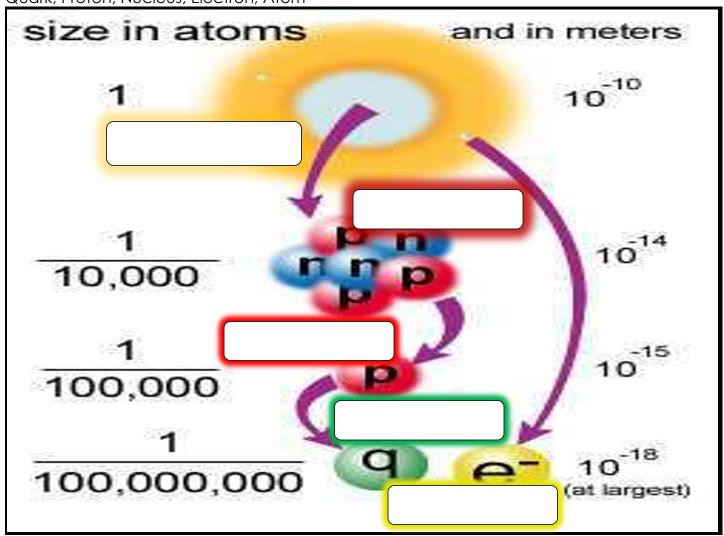
Part 1 Lesson 1


Most of an atom is mostly ______ space, electrons orbit far away from the nucleus. _____Electrons = Mass of 1 proton.

1 Neutron = little bit more mass than a proton.

Complete the flow chart as described in the slideshow.

Please complete the blank standard model in particle physics below. Colored pencils can help improve your model.


Which is a Fermion? and which is a Boson?

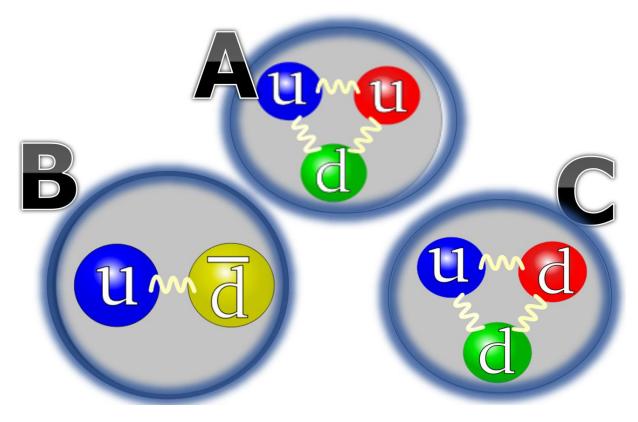
۸	is a particle which has an integer spin (0, 1, 2). All the force carrier particles
and mesons.	
Α	is any particle that has an odd half-integer (like 1/2, 3/2, and so forth) spin.
Quarks and lep	otons, as well as most composite particles, like protons and neutrons.

The ______ Boson Particle: One of the 17 fundamental particles in the Standard Model.

- The other 16 are the 6 quarks, 6 leptons, the photon, gluon, W, and Z bosons.
- These 17 particles are the ones responsible for all the forces in nature except gravity.
- The Higgs is currently being studied and until recently was only theoretical.
- The very massive Higgs Boson explains why the other elementary particles, except the photon and gluon, are massive. Also why the photon has no mass.

Please describe some relative size of particles in comparison to each other. Word Bank: Quark, Proton, Nucleus, Electron, Atom

Please put the following in the correct box according to their size.


Atom	Electron	Quark	Proton	Neutron	Molecule	Nucleus
Smalles	†					→ Largest

Part 2 Lesson 2

Physicists have discovered that protons and new even smaller particles called	utrons () are composed of
Just bigger than an	
	 nade of quarks held together by the strong
force.	
The proton and neutron areauarks.	$_{\scriptscriptstyle \perp}$ (family of hadrons) which are made of three

Which two are hadrons / in the family of baryons and which is a Meson Which is the Proton, and which is the Neutron? Explain and label the picture below.

The <u>proton</u> consists of _____ up quarks and _____ down quark (if you sum up the electrical charges / spin of this combination you get +1, the charge of the proton).

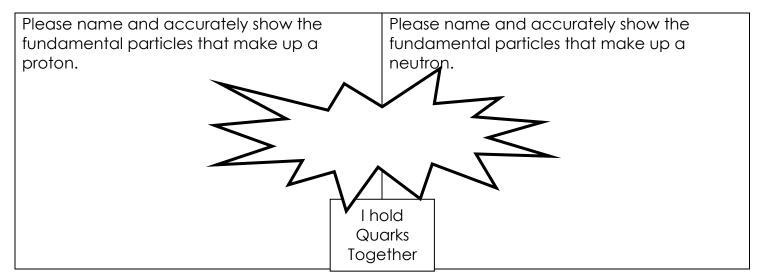
2/3 + 2/3 + -1/3 =

The neutron is a combination of _____ down quarks and _____ up quark (and again, if you combine the electrical charges, they sum up to zero: it's therefore electrically neutral)

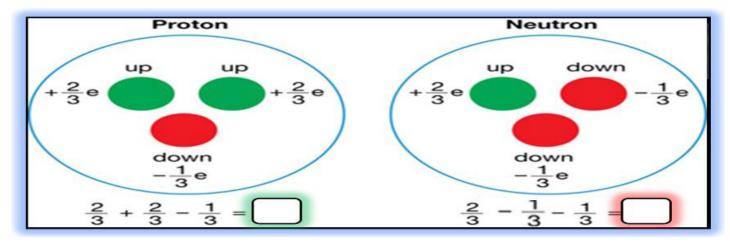
-1/3 + -1/3 + 2/3 =

What is the Spin on the three below. Word Bank:

Hadron: A composite particle made of ______ held together by the _____ force. The proton and neutron are _____ (family of hadrons) which are made of three quarks.


Meson: Subatomic particles composed of one quark and one ____quark, bound together by the strong interaction.

- Mesons are Bosons.
- They mediate the nuclear (or strong) interaction between nucleons.
- Keeps the nucleus together!


Gluons: Holds ______ together (Boson).

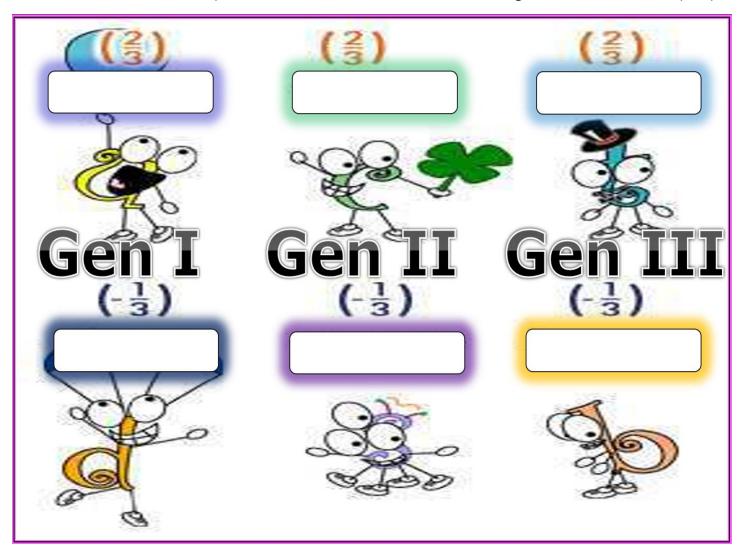
Color Force: The force between quarks is called the color force. The color force involves the exchange of gluons and is so strong that the quark-antiquark pair production energy is reached before quarks can be separated.

The Proton is composed of two up quarks, one down. (Fermion)
A neutron is composed of two down quarks and one up quark. (Fermion)

Up Quarks carry a 2/3 Charge, and a down quark carries a -1/3 charge. What is the charge of the Proton and Neutron below.

A particle accelerator is a machine that uses electromagnetic fields to propel charged particles.

 The particles reach extremely high speeds and energies, and to contain them in well-defined beams.


Part 2 Lesson 3 Particles

Particle: A tiny piece of anything.

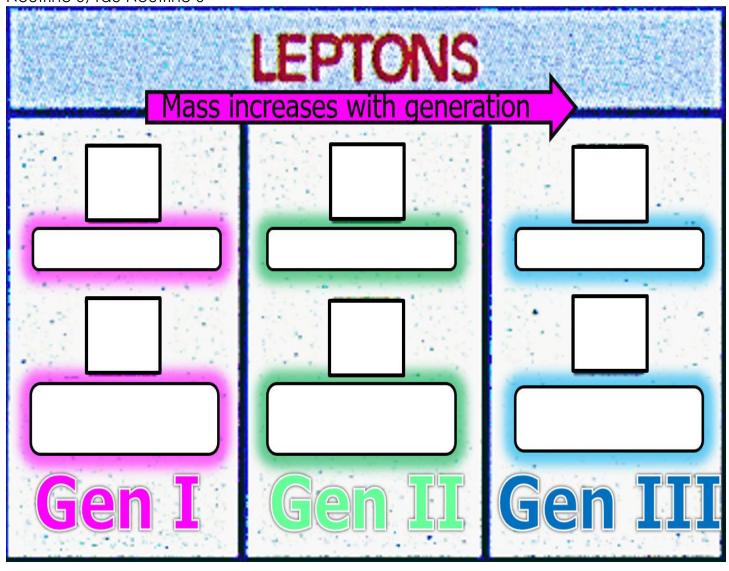
An atom or nucleus.

Elementary particle, quark, gluon.

Name the _____ of quarks below. Word Bank: Charm, Strange, Bottom, Down, Top, Up

A lepton is an elementary particle of half-integer spin that does not undergo strong interactions.

The 6 Leptons


Electron

Muon

Tau

3 types of Neutrinos

Please name the Leptons below: Tau Neutrino 0, Electron -1, Tau -1, Muon -1, Electron Neutrino 0, Tau Neutrino 0

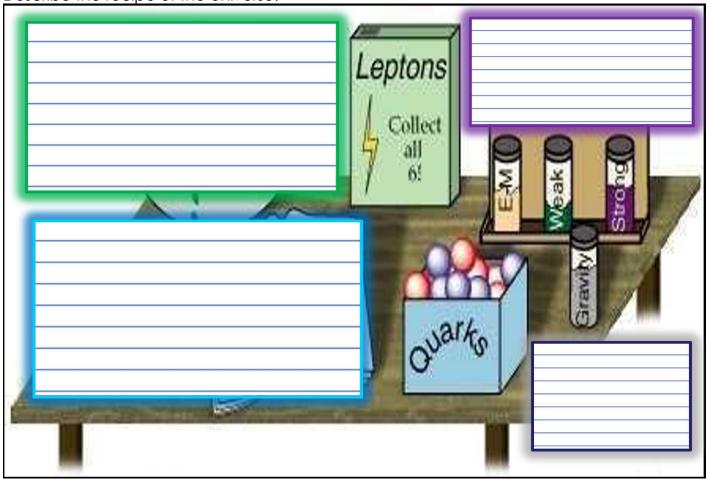
The Neutrino

- Neutrinos have no electrical or _____ charge, they almost never _____
 with any other particles.
 - Most neutrinos pass right through the earth without ever interacting with a single atom.

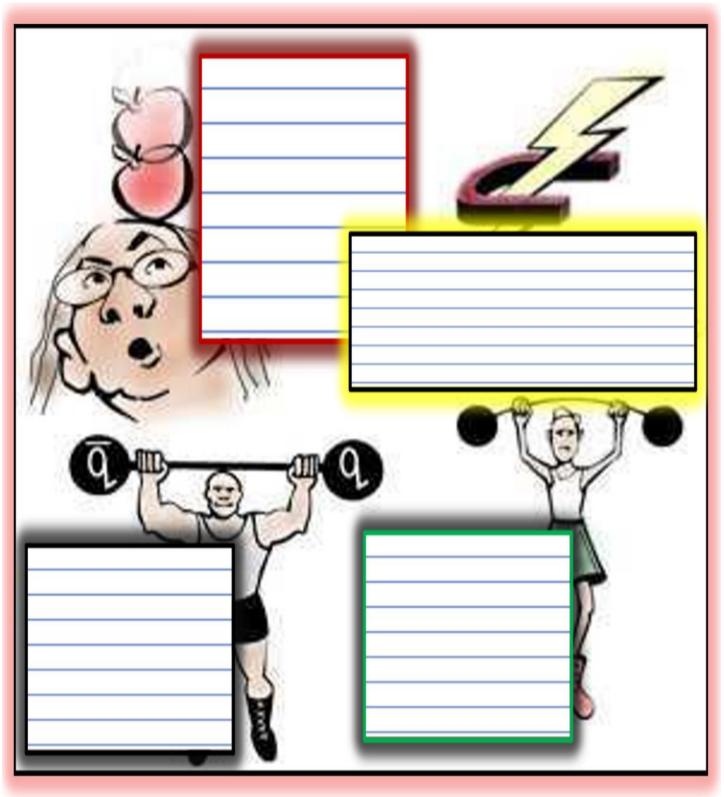
Part 2 Lesson 4 Fundamental Forces

All visible matter in the universe is made from the first generation of matter particles -- up quarks, down quarks, and electrons. This is because all second and third generation particles are unstable and quickly decay into stable first generation particles.

Everything is made of...


6 quarks that make Protons and Neutrons 6 leptons. The best-known lepton is the electron. Force carrier particles.

What am I and all matter made of?


A correct answer dives deep into the recipe of the universe.

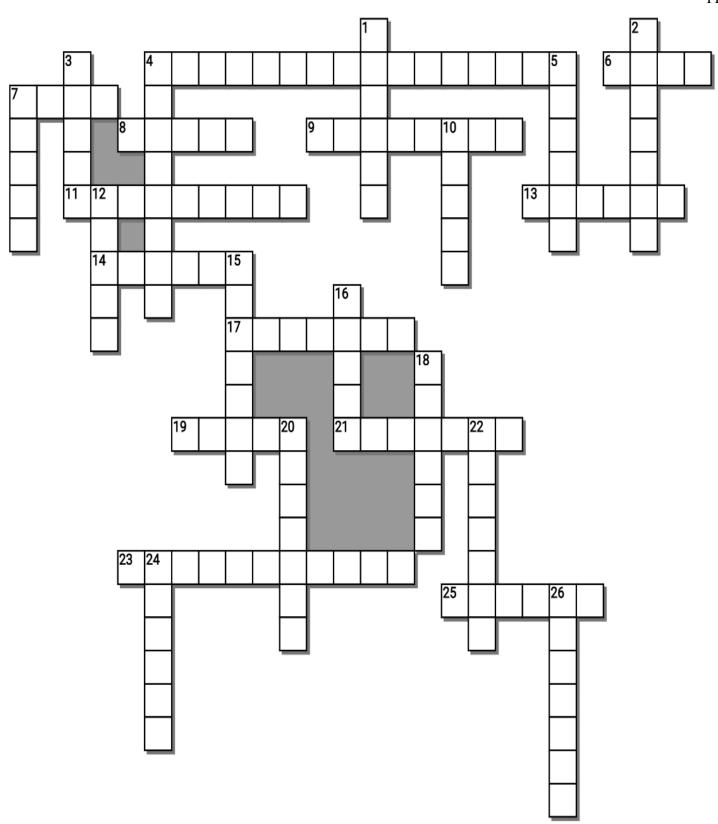
Describe the recipe of the Universe.

Force Carrier Particles: Particles communicate with one another through force carriers. Force carriers are particles that act like messages exchanged between other particles. Scientists have discovered force carriers for three of the four known forces: electromagnetism, the strong force and the weak force. Still looking for the graviton

Provide some information about the fundamental forces below as described in the slideshow

Which quark integer spin is a proton and which is a neutron. Please Label the charge.

-1/3 + -1/3 + 2/3 = (Charge)	2/3 + 2/3 + -1/3 = (Charge)
-1/3 + -1/3 + 2/3 = (Charge)	2/3 + 2/3 + -1/3 = (Charge)


Fill in the blanks.

H: A composite particle made of quarks held together by the strong force. The proton and neutron are b (family of hadrons) which are made of three quarks.
F are particles that have an odd half integer spin (like 1/2, 3/2, and so forth) such as the proton, n , and electron. B are particles that have integer spin (0,1,2) and not constrained by the Pauli exclusion principle. All the force carrier p and mesons are bosons.
Meson: Subatomic particles composed of one quark and one $oldsymbol{a}_{}$, bound together by the $oldsymbol{s}_{}$ interaction.
When two quarks are close to each other they exchange g . This creates a very strong c force field that binds the quarks together. This helps keep the nucleus together.

Name the Four Fundamental Forces Based on their Description Below. An awesome answer will also include each forces corresponding boson particle.

Word Bank: Gravity, Strong Force, Weak Force, Electromagnetism

This force is	The forces that occur	The natural	A force between
responsible for the	between electrically	phenomenon by	elementary particles
binding together of	charged particles. In	which physical	that causes certain
nucleons and	electromagnetic	bodies appear to	processes that take
controls their stability,	theory these forces	attract each other	place with low
it is known as the	are explained using	with a force	probability, as
strong nuclear force.	electromagnetic	proportional to their	radioactive beta-
The strongest force.	fields. Much stronger	masses. Weakest	decay and collisions
	than gravity and has	force but has an	between neutrinos
	an infinite range.	infinite range.	and other particles.
			Short range and only
			dominate only on sub
			atomic particles

Possible Answers

ACCELERATOR, BOSON, CARRIER, CHARGE, COLOR, ELECTROMAGNETISM, ELECTRON, EMPTY, FERMION, GLUON, GRAVITY, HADRON, HIGGS, LEPTON, MATTER, MESON, MODEL, MUON, NEUTRINOS, NEUTRON, NEUTRON, NUCLEUS, PARTICLE, PROTON, QUARKS, STRANGE, STRONG, WEAK

Note: #3 Down should be boson, and #2 Down should be fermion – Sorry (2), it was a late night making this puzzle.

Across

- 4. The forces that occur between electrically charged particles. In electromagnetic theory these forces are explained using electromagnetic fields. Much stronger than gravity and has an infinite range.
- 6. A force between elementary particles that causes certain processes that take place with low probability, as radioactive beta-decay and collisions between neutrinos and other particles. Short range and only dominate only on sub atomic particles

 7. The 6 Leptons Electron M. Tau 3
- 7. The 6 Leptons Electron M____ Tau 3 types of Neutrinos
- 8. Subatomic particles composed of one quark and one antiquark, bound together by the strong interaction.
- 9. A tiny piece of anything.
- 11. _____ have no electrical or strong charge, they almost never interact with any other particles.
- 13. A _____ is an elementary particle of half-integer spin that does not undergo strong interactions.
- 14. The _____ consists of two up quarks and one down quark (if you sum up the electrical charges / spin of this combination you get +1, the charge of the proton). 2/3 + 2/3 + -1/3 = +1
- 19. Holds quarks together (Boson).
- 21. The most bizarre quark
- 23. A particle ______ is a machine that uses electromagnetic fields to propel charged particles.
- 25. The _____ Force: This force is responsible for the binding together of nucleons and controls their stability, it is known as the strong nuclear force. The strongest force.

Down

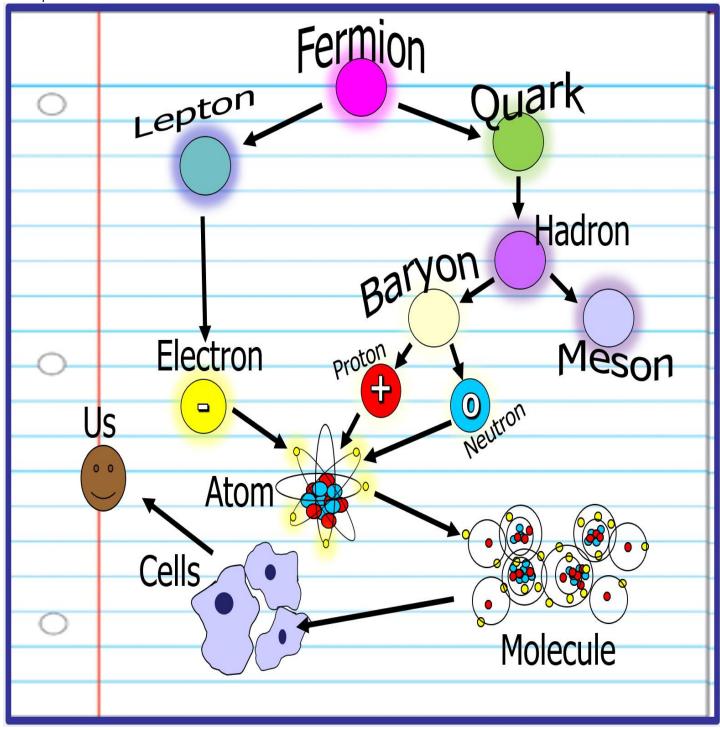
DOWII
1. A composite particle made of quarks held
together by the strong force.
2. A is a particle which has an integer spin (0, 1, 2). All the force carrier
particles and mesons.
3. A is any particle that has an
odd half-integer (like 1/2, 3/2, and so forth)
spin. Quarks and leptons, as well as most
composite particles, like protons and
neutrons.
4. Quarks are just bigger than the
5. All visible in the universe is
made from the first generation of matter
particles up quarks, down quarks, and
electrons.
7. The Standard of particle physics
is the theory describing three of the four
known fundamental forces (the
electromagnetic, weak, and strong
interactions, and not including the
gravitational force) in the universe, as well as
classifying all known elementary particles.
10 Force: The force between
quarks is called the color force. The color
force involves the exchange of gluons and is
so strong that the quark-antiquark pair
production energy is reached before quarks
can be separated.
12. Most of an atom is mostly
space
15. Electrons orbit far away from the
16. The Boson Particle: One of the
17 fundamental particles in the Standard
Model.
18. Protons and Neutrons are composed of
even smaller particles called
20. The neutron is a combination of
down quarks and up quark (and again,
if you combine the electrical charges, they
sum up to zero: it's therefore electrically
neutral) -1/3 + -1/3 + 2/3 = 0
22. The natural phenomenon by which
physical bodies appear to attract each other
with a force proportional to their masses.
Weakest force but has an infinite range.

24. Up Quarks carry a 2/3 C_

26. A proton is just larger than a ____

Part 2 Inside the Atom

Name: Due Date:


Part 1 Lesson 1

Most of an atom is mostly empty space, electrons orbit far away from the nucleus.

1836 Electrons = Mass of 1 proton.

1 Neutron = little bit more mass than a proton.

Complete the flow chart as described in the slideshow.

Please complete the blank standard model in particle physics below. Colored pencils can help improve your model.

Fermions

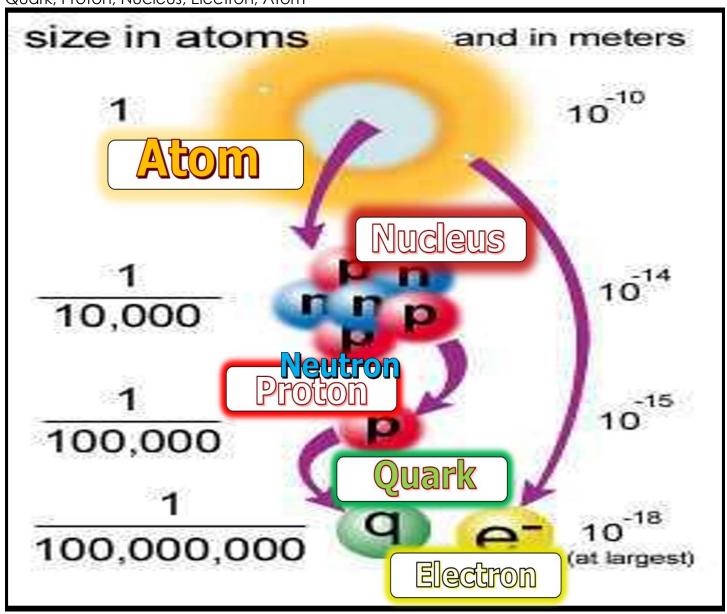
Bosons

EM

Weak

Force

Bottom


A Boson is a particle which has an integer spin (0, 1, 2...). All the force carrier particles and mesons.

A Fermion is any particle that has an odd half-integer (like 1/2, 3/2, and so forth) spin. Quarks and leptons, as well as most composite particles, like protons and neutrons.

The Higgs Boson Particle: One of the 17 fundamental particles in the Standard Model.

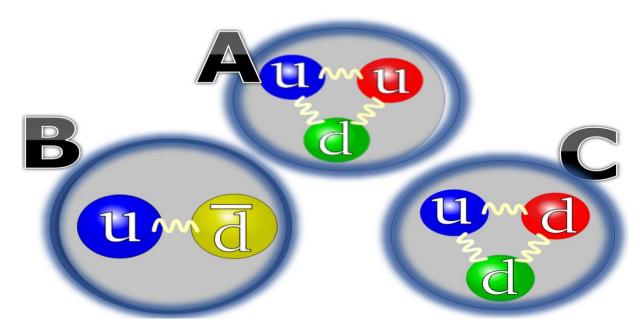
- The other 16 are the 6 quarks, 6 leptons, the photon, gluon, W, and Z bosons.
- These 17 particles are the ones responsible for all the forces in nature except gravity.
- The Higgs is currently being studied and until recently was only theoretical.
- The very massive Higgs Boson explains why the other elementary particles, except the photon and gluon, are massive. Also why the photon has no mass.

Please describe some relative size of particles in comparison to each other. Word Bank: Quark, Proton, Nucleus, Electron, Atom

Please put the following in the correct box according to their size.

Atom I	Electron	Quark	Proton	Neutron	Molecule	Nucleus
Smallest						→ Largest
Electron	Quark	Proton	Neutron	Nucleus	Atom	Molcule

Part 2 Lesson 2


Physicists have discovered that protons and neutrons (Hadrons) are composed of even smaller particles called Quarks.

Just bigger than an Electron.

Hadron: A composite particle made of quarks held together by the strong force. The proton and neutron are baryon (family of hadrons) which are made of three quarks.

Which two are hadrons / in the family of baryons and which is a Meson Which is the Proton, and which is the Neutron? Explain and label the picture below.

A and C are hadrons (A is the Proton because it has two up quarks and one down quark. C is the Neutron because it has two down quarks and one up quark). B is a Meson made of one quark and one anti-quark

The <u>proton</u> consists of 2 up quarks and 1 down quark (if you sum up the electrical charges / spin of this combination you get +1, the charge of the proton).

2/3 + 2/3 + -1/3 = +1

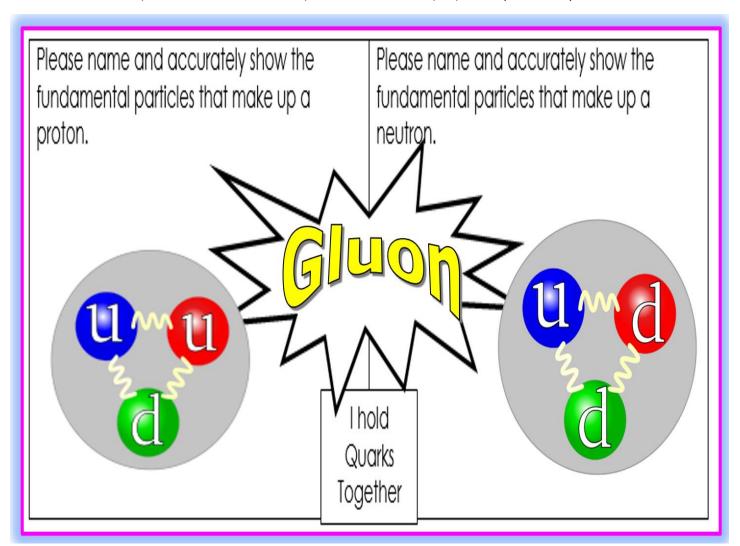
The neutron is a combination of 2 down quarks and 1 up quark (and again, if you combine the electrical charges, they sum up to zero: it's therefore electrically neutral)

-1/3 + -1/3 + 2/3 = 0 Neutral

What is the Spin on the three below. Word Bank:

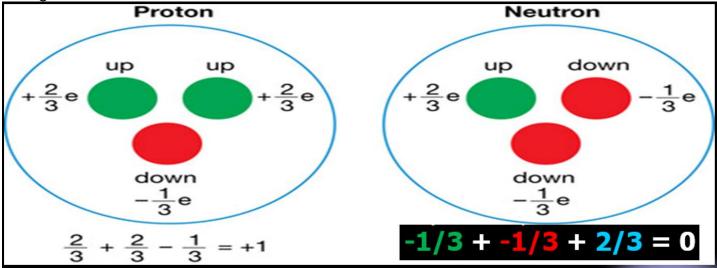
Hadron: A composite particle made of quarks held together by the strong force.

The proton and neutron are baryons (family of hadrons) which are made of three quarks.


Meson: Subatomic particles composed of one quark and one anti quark, bound together by the strong interaction.

- Mesons are Bosons.
- They mediate the nuclear (or strong) interaction between nucleons.
- Keeps the nucleus together!

Gluons: Holds quarks together (Boson).


Color Force: The force between quarks is called the color force. The color force involves the exchange of gluons and is so strong that the quark-antiquark pair production energy is reached before quarks can be separated.

The Proton is composed of two up quarks, one down. (Fermion)
A neutron is composed of two down quarks and one up quark. (Fermion)

Up Quarks carry a 2/3 Charge, and a down quark carries a -1/3 charge. What is the

charge of the Proton and Neutron below.

A particle accelerator is a machine that uses electromagnetic fields to propel charged particles.

 The particles reach extremely high speeds and energies, and to contain them in well-defined beams.

Part 2 Lesson 3 Particles

Particle: A tiny piece of anything.

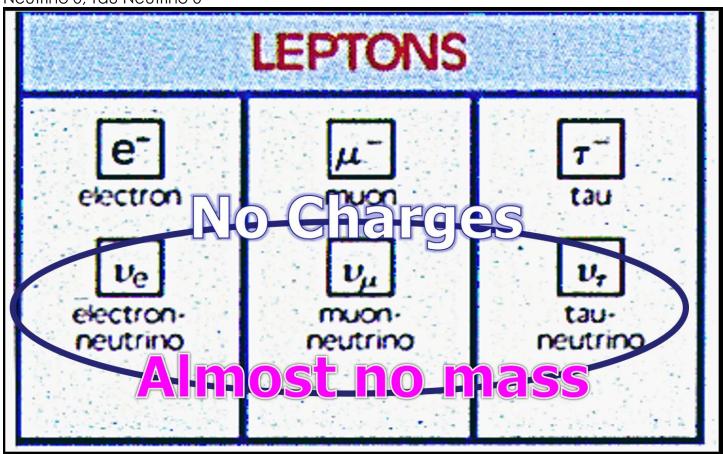
An atom or nucleus.

Elementary particle, quark, gluon.

Name the Flavors of quarks below. Word Bank: Charm, Strange, Bottom, Down, Top, Up

A lepton is an elementary particle of half-integer spin that does not undergo strong interactions.

The 6 Leptons


Electron

Muon

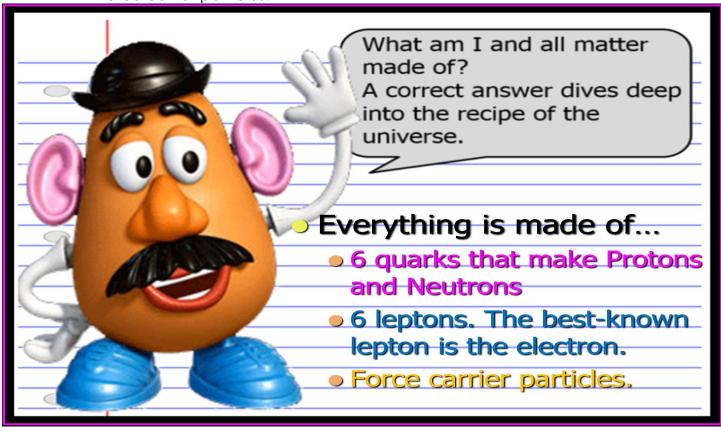
Tau

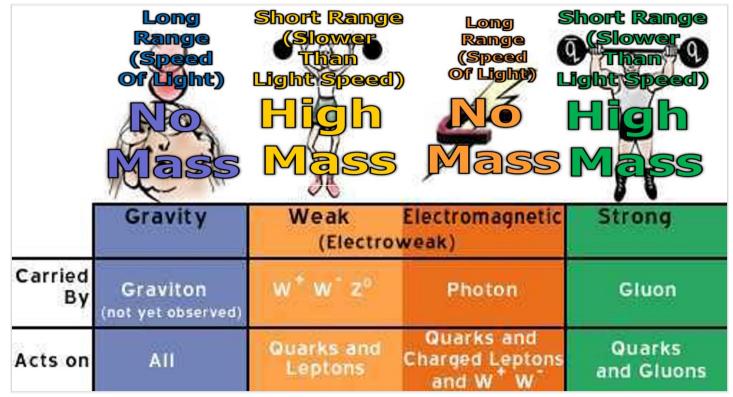
3 types of Neutrinos

Please name the Leptons below: Tau Neutrino 0, Electron -1, Tau -1, Muon -1, Electron Neutrino 0, Tau Neutrino 0

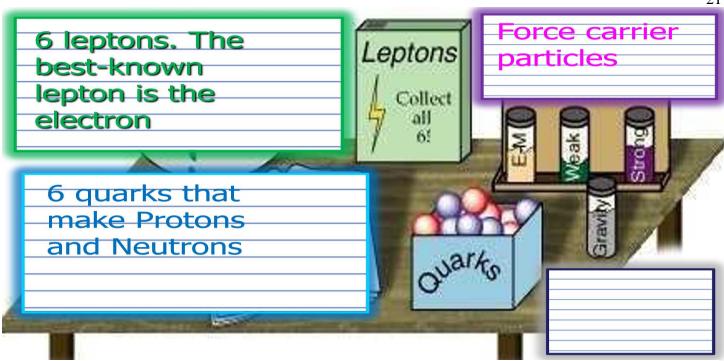
The Neutrino

- Neutrinos have no electrical or strong charge, they almost never interact with any other particles.
 - Most neutrinos pass right through the earth without ever interacting with a single atom.

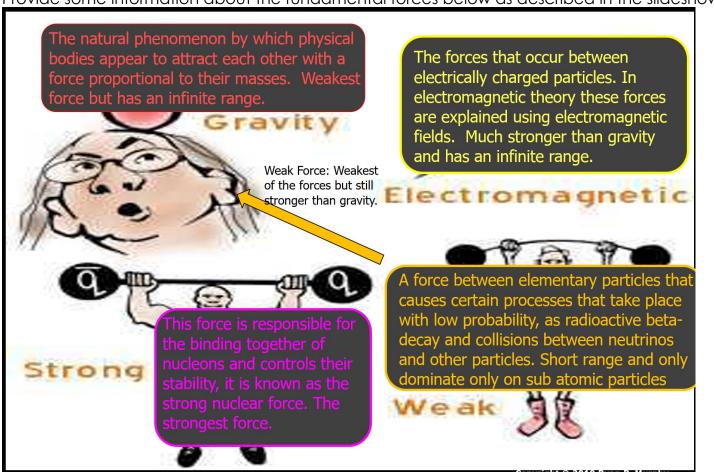

Part 2 Lesson 4 Fundamental Forces


All visible matter in the universe is made from the first generation of matter particles -- up quarks, down quarks, and electrons. This is because all second and third generation particles are unstable and quickly decay into stable first generation particles.

Everything is made of...


6 quarks that make Protons and Neutrons

6 leptons. The best-known lepton is the electron. Force carrier particles.



Describe the recipe of the Universe.

Force Carrier Particles: Particles communicate with one another through force carriers. Force carriers are particles that act like messages exchanged between other particles. Scientists have discovered force carriers for three of the four known forces: electromagnetism, the strong force and the weak force. Still looking for the graviton

Provide some information about the fundamental forces below as described in the slideshow

Which quark integer spin is a proton and which is a neutron. Please Label the charge.

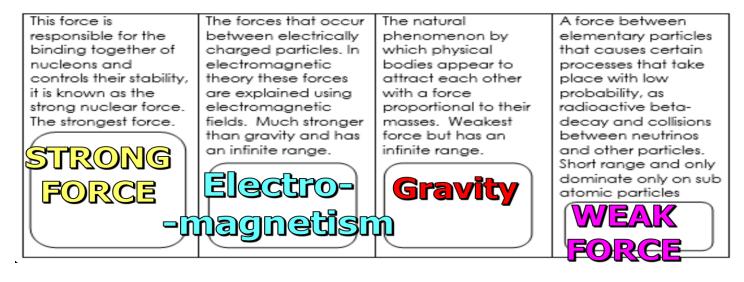
$$-1/3 + -1/3 + 2/3 =$$
Neutron (0 Charge)

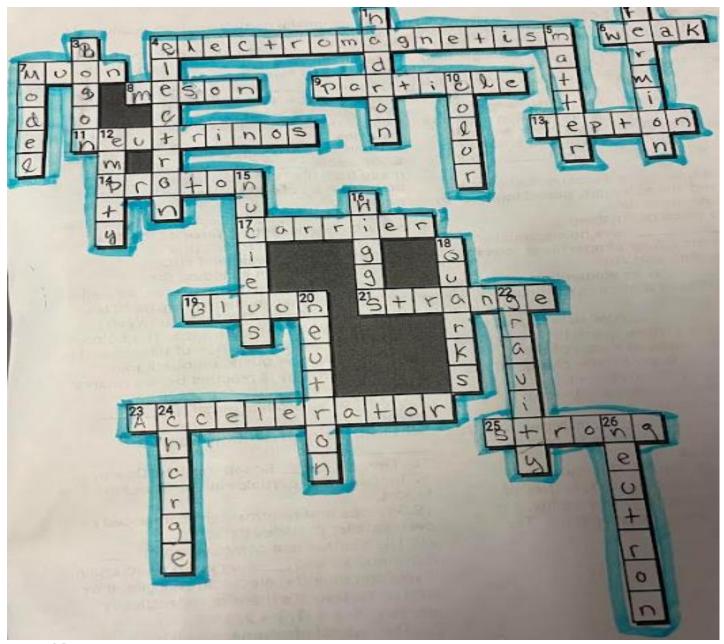
$$2/3 + 2/3 + -1/3 =$$
Proton (+1Charge)

Fill in the blanks.

H_Hadron: A composite particle made of quarks held together by the strong force. The proton and neutron are Baryon (family of hadrons) which are made of three quarks.

Fermions are particles that have an odd half integer spin (like 1/2, 3/2, and so forth) such as the proton, Neutron and electron. Baryons are particles that have integer spin (0,1,2...) and not constrained by the Pauli exclusion principle. All the force carrier particles and mesons are bosons.


Meson: Subatomic particles composed of one quark and one Anti-Quarkound together by the STRONG interaction.


When two quarks are close to each other they exchange gG Uon. This creates a very strong Colorice field that binds the quarks together. This helps keep the nucleus together.

Name the Four Fundamental Forces Based on their Description Below. An awesome answer will also include each forces corresponding boson particle.

Word Bank: Gravity, Strong Force, Weak Force, Electromagnetism

Word Bank: Gravity, Strong Force, Weak Force, Electromagnetism

Possible Answers

ACCELERATOR, BOSON, CARRIER, CHARGE, COLOR, ELECTROMAGNETISM, ELECTRON, EMPTY, FERMION, GLUON, GRAVITY, HADRON, HIGGS, LEPTON, MATTER, MESON, MODEL, MUON, NEUTRINOS, NEUTRON, NEUTRON, NUCLEUS, PARTICLE, PROTON, QUARKS, STRANGE, STRONG, WEAK

Note: #3 Down should be boson, and #2 Down should be fermion. And #26, the Neutron is in fact slightly more massive than the proton. – Sorry ②, it was a late night making this puzzle.

Across

- 4. The forces that occur between electrically charged particles. In electromagnetic theory these forces are explained using electromagnetic fields. Much stronger than gravity and has an infinite range.
- 6. A force between elementary particles that causes certain processes that take place with low probability, as radioactive beta-decay and collisions between neutrinos and other particles. Short range and only dominate only on sub atomic particles 7. The 6 Leptons Electron M_____ Tau 3 types of Neutrinos
- 8. Subatomic particles composed of one quark and one antiquark, bound together by the strong interaction.
- 9. A tiny piece of anything.
- 11. _____ have no electrical or strong charge, they almost never interact with any other particles.
- 13. A ______ is an elementary particle of half-integer spin that does not undergo strong interactions.
- 14. The _____ consists of two up quarks and one down quark (if you sum up the electrical charges / spin of this combination you get +1, the charge of the proton). 2/3 + 2/3 + -1/3 = +1
- 19. Holds quarks together (Boson).
- 21. The most bizarre quark
- 23. A particle ______ is a machine that uses electromagnetic fields to propel charged particles.
- 25. The _____ Force: This force is responsible for the binding together of nucleons and controls their stability, it is known as the strong nuclear force. The strongest force.

Down

1. A composite particle made of quarks held together by the strong force. 2. A is a particle which has an integer spin (0, 1, 2). All the force carrier particles and mesons. 3. A is any particle that has an odd half-integer (like 1/2, 3/2, and so forth) spin. Quarks and leptons, as well as most composite particles, like protons and neutrons.
4. Quarks are just bigger than the 5. All visible in the universe is made from the first generation of matter particles up quarks, down quarks, and electrons.
7. The Standard of particle physics is the theory describing three of the four known fundamental forces (the electromagnetic, weak, and strong interactions, and not including the gravitational force) in the universe, as well as classifying all known elementary particles. 10 Force: The force between quarks is called the color force. The color force involves the exchange of gluons and is so strong that the quark-antiquark pair production energy is reached before quarks can be separated. 12. Most of an atom is mostly space 15. Electrons orbit far away from the
16. The Boson Particle: One of the 17 fundamental particles in the Standard Model.
18. Protons and Neutrons are composed of even smaller particles called