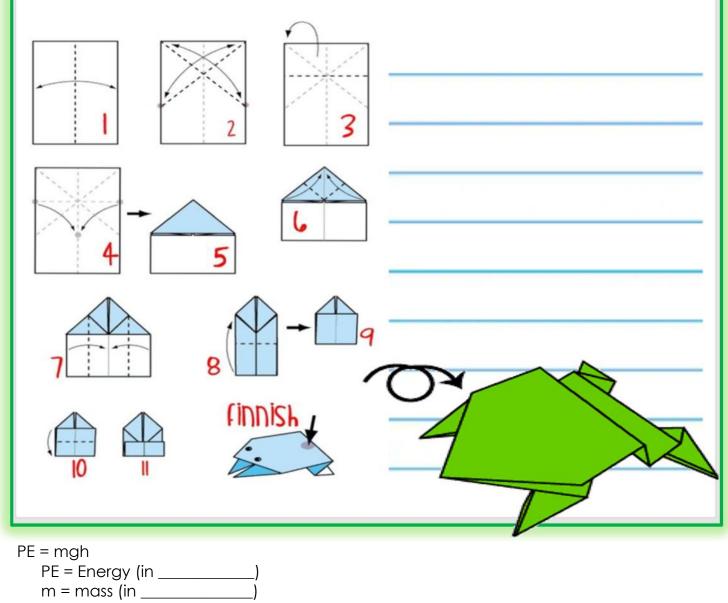
# Part 2 Potential and Kinetic Energy Name:

I am aware that I need to show all mathematical work in an organized manner to receive any credit for a question that involves calculations of any kind. Omitting / leaving out the units in the problem or at the end will also result in zero credit  $\diamond$  \_\_\_\_\_


Part 2 Lesson 1 Potential Energy

Energy can either kinetic or potential.

Potential Energy: (PE) The energy stored by an object as a result of its p\_\_\_\_\_

Potential Energy is the energy of position. Objects that are e\_\_\_\_\_ have a high potential energy. Kinetic Energy is the energy of m\_\_\_\_\_

Make, then explain how Potential and Kinetic Energy relate to your Origami jumping frog.

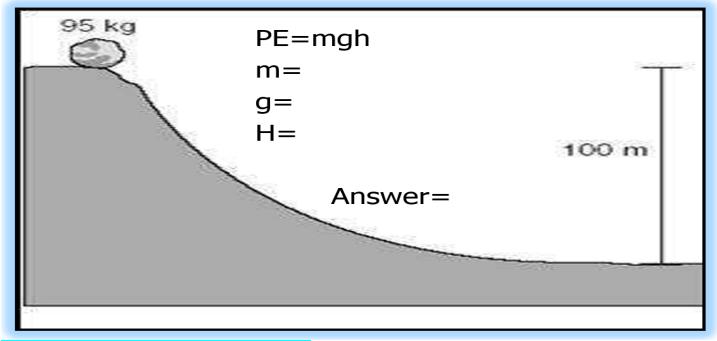


g = gravitational acceleration of the earth \_\_\_\_\_ m/s<sup>2</sup>

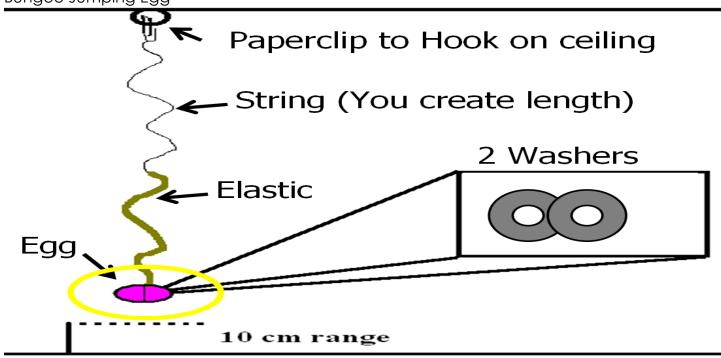
h = \_\_\_\_\_ above earth's surface (in meters)

Please visit the site below (Energy Skate Park) describe potential and kinetic energy using the half pipe below.

-Draw in a skateboarder and explain where their potential energy is the highest, and when their kinetic energy is the highest. Does their total energy ever change?


http://phet.colorado.edu/en/simulation/energy-skate-park

•




| Calculate the potential energy for a 2 kg<br>basketball dropping from a height of 3.5<br>meters with a velocity of 9.8 m/s <sup>2</sup> Find the<br>PE in Joules? PE=mgh           | Calculate the potential energy of a shotput<br>dropping from a height of 6 meters weighing<br>5.44 kg with a velocity of 9.8 m/s <sup>2</sup> .<br>- Find the PE in Joules? PE=mgh                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Please show your work!                                                                                                                                                             | Please show your work!                                                                                                                                                                                                            |
| Calculate the potential energy of a hammer<br>dropping from a height of 60 meters<br>weighing 7.26 kg with a velocity of 9.8 m/s <sup>2</sup> .<br>- Find the PE in Joules? PE=mgh | Calculate the potential energy of the 1,025<br>kg Perseverance Rover drop of 20 meters to<br>the Martian surface. Find the PE in Joules?<br>PE=mgh Mars Gravity Constant = 3.721 m/s <sup>2</sup><br>-We will do this on lesson 2 |
| Please show your work!                                                                                                                                                             | Please show your work!                                                                                                                                                                                                            |

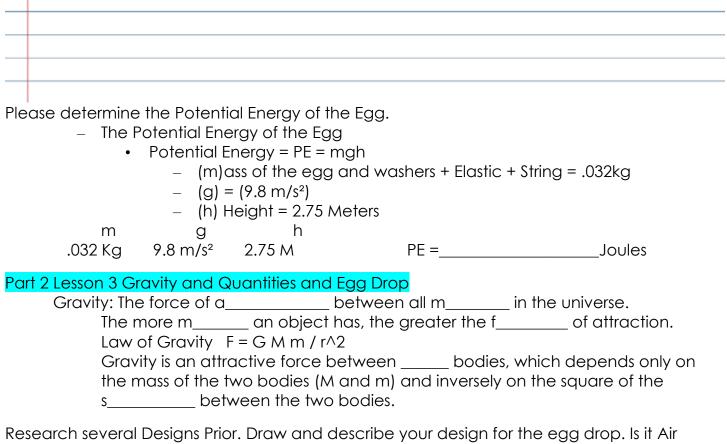
What's the potential energy of the rock? Use the equation in your journal. Answer is in Joules. **Show your organized work! PE=mgh** 



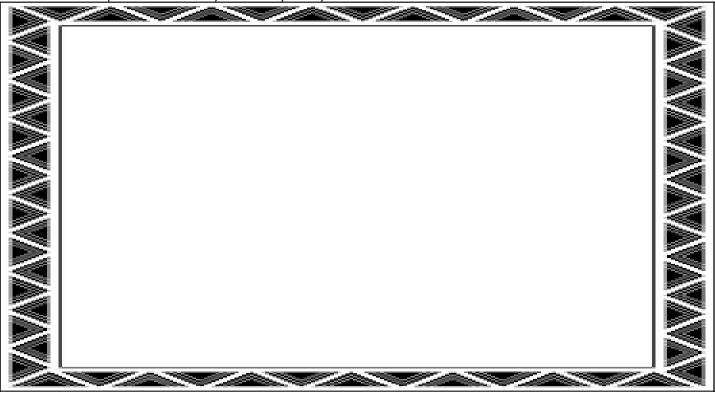
Part 2 Lesson 2 PE, Bungee Jumping Egg Bungee Jumping Egg



#### Activity! Instructions


Goal: For the egg to fall from the ceiling and come within 10 cm of the floor without crashing.

-Everyone has the same amount of bungee material (Elastic / Rubber Bands)


- -You must measure the correct length of rope to land within the 10 cm range.
- -You are not allowed any test jumps from the ceiling but may drop from eye height.
- -You must determine rope length using the provided information.
- -You may begin when given the materials and use the information on the next slide.

How long does your string need to be in centimeters?

Did your egg drop succeed? Why? Record something you learned.



Research several Designs Prior. Draw and describe your design for the egg drop. Is if A Resistance, Impulse, Elasticity, or Buoyancy, or some combination of the above.



| Faa | Drop | Rubric |
|-----|------|--------|
| LGG | Diop | NUDIIC |

| Behavior During Construction                                                                                                                                                                                                                       | Design / Planning                                                                                                                                                                                                            | The Drop                                                                                  | Behavior during the Drop                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25 pts                                                                                                                                                                                                                                             | 25 pts                                                                                                                                                                                                                       | 25 pts                                                                                    | 25 pts                                                                                                                                                       |
| A Used all materials appropriately<br>and efficiently. Students were on-<br>task the entire time. The group<br>worked well together, collaborating<br>on a design, and executing that<br>design. No conflicts of any kind.<br>25 pts               | A Student had a well-planned design.<br>The design used most or all the<br>principles of impulse, air resistance,<br>elasticity, and buoyancy. The plan<br>included measurements, materials, and<br>was adaptable.<br>25 pts | A The Egg was<br>undamaged.<br>25 pts                                                     | A Student was well-behaved<br>and supportive of other projects<br>during the drops. Students<br>cleaned up any mess and<br>followed all school expectations. |
| B Student had to be spoken to<br>about time use and general<br>behavior but on-task. Fooling, Group<br>was able to create and execute a<br>design. Conflict throughout was<br>obvious and apparent but the group<br>ultimately designed and built. | <b>B</b> Student had a rough plan, but the<br>project lacked a solid design and relied<br>on making things happen as they went.<br>Students were able to build their design.<br>20pts                                        | <b>B</b> Some small<br>cracks were visible,<br>but most of the<br>egg was intact<br>20pts | <b>B</b> Student had to be talked to about general behaviors.                                                                                                |
| 20pts                                                                                                                                                                                                                                              |                                                                                                                                                                                                                              |                                                                                           | 20pts                                                                                                                                                        |
| <b>C</b> Student was fooling around with<br>materials and generally off-task. Lots<br>of conflict and the group was able<br>to design a model but was unable<br>to build one.<br>15 pts                                                            | <b>C</b><br>The student had a plan but was unable<br>to build the design.<br>15 pts                                                                                                                                          | C Leakage from<br>cracks but still in<br>the shape on an<br>egg<br>15 pts                 | <b>C</b> Student had to be talked to<br>more than once. Not following<br>school behavioral expectations.<br>15 pts                                           |
| D/X<br>Unsafe and had to be talked to<br>repeatedly. The group was not<br>collaborative and could not<br>cooperate. Nothing was designed or<br>built.<br>10pts / 5pts / 0 pts                                                                      | <b>D/X</b> Student was just fooling around<br>with the materials and did not design or<br>build their design.<br>10pts / 5pts / 0 pts                                                                                        | D/X Totally<br>Destroyed<br>10pts / 5pts / 0pts                                           | <ul> <li>D/X Unsafe and disruptive. Not following school behavioral expectations.</li> <li>10pts / 5pts / 0pts</li> </ul>                                    |

Comments:

\_\_\_\_\_Grade: \_\_\_\_\_ Did your egg survive? What would you do differently next time, and or why was your design successful. Where did the energy go to prevent the egg from breaking, or causing it to break?

| - |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

Part 2 Lesson 4 Kinetic Energy – Scalar Quantity. It has magnitude and direction. Kinetic Energy

The energy that matter has because of its m\_\_\_\_\_ and m\_\_\_\_\_. where m = \_\_\_\_\_\_ of object in kilograms v = \_\_\_\_\_\_ of object in m/s<sup>2</sup> KE = Energy in \_\_\_\_\_\_ KE =  $\frac{1}{2} \times m \times v^2$ 

Do not forget your order of operations. PEMDAS

For KE, you must do exponents (E) before multiplying (M). So square the velocity first, and multiply by half of the mass.

Kinetic energy

T\_\_\_\_\_ Energy: Motion from one location to another.

V\_\_\_\_\_ energy (sound)

E\_\_\_\_\_ energy: Flow of electrons.

R\_\_\_\_\_ energy.

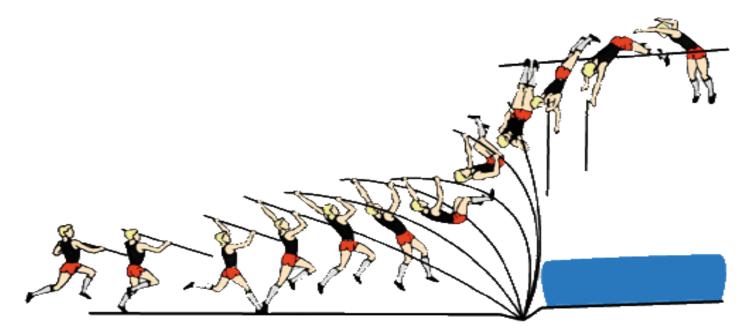
Kinetic energy is a \_\_\_\_\_ quantity; as it does not have a direction.

Velocity, acceleration, force, and momentum are **v**\_\_\_\_\_. A quantity having direction as well as magnitude

| What is the kinetic energy of a .142 kilogram baseball traveling at 45 meters per second?<br>-Please show your work! | What is the kinetic energy of a 10 kilogram<br>cannon ball traveling at 50 meters per<br>second? |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                                                                                                                      |                                                                                                  |
|                                                                                                                      |                                                                                                  |
|                                                                                                                      |                                                                                                  |
|                                                                                                                      |                                                                                                  |
|                                                                                                                      |                                                                                                  |
|                                                                                                                      |                                                                                                  |
|                                                                                                                      |                                                                                                  |
|                                                                                                                      |                                                                                                  |
|                                                                                                                      |                                                                                                  |
|                                                                                                                      |                                                                                                  |
|                                                                                                                      |                                                                                                  |
|                                                                                                                      |                                                                                                  |
|                                                                                                                      |                                                                                                  |
|                                                                                                                      |                                                                                                  |
|                                                                                                                      |                                                                                                  |
|                                                                                                                      |                                                                                                  |
|                                                                                                                      |                                                                                                  |
|                                                                                                                      |                                                                                                  |
|                                                                                                                      |                                                                                                  |
|                                                                                                                      |                                                                                                  |

<u>Mechanical Energy</u> (ME) – Energy due to p\_\_\_\_\_ and m\_\_\_\_\_; sum of potential and kinetic energies. Includes heat and friction.

Just add Potential Energy + Kinetic Energy.


|                                                                                                                                                        | 7                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| A ski jumper moving down the hill had a<br>Potential Energy of 1300 Joules, and a Kinetic<br>Energy of 3,900 Joules.<br>What is her Mechanical Energy? | What's the kinetic energy of a ,1200 gram<br>frozen fish being tossed at 2 meters per<br>second?<br>• m = 12 kg<br>• v = 2 m/s <sup>2</sup> |
|                                                                                                                                                        |                                                                                                                                             |
|                                                                                                                                                        |                                                                                                                                             |
|                                                                                                                                                        |                                                                                                                                             |
| Please show your work!                                                                                                                                 | -Please show your work!                                                                                                                     |

Please show how potential and kinetic energy is conserved with this ski jumper. Total Energy should always be 10,00 Joules

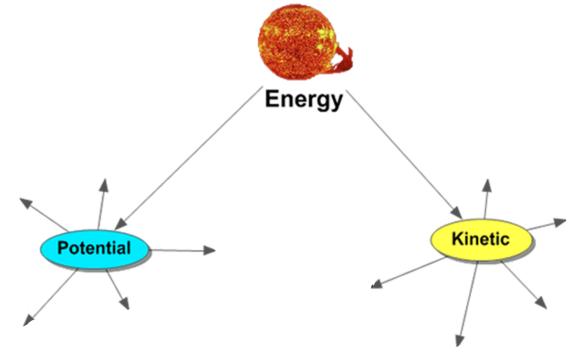
| PE = KE = PE = KE = RE = RE = RE = RE = RE = RE = R                                                                                                                                                                                                                                                            | PE = KE =                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Find the Mechanical Energy of the large D<br>battery hitting the parked car from the<br>highest position.<br>PE = mgh KE = $\frac{1}{2}$ mass * velocity <sup>2</sup><br>D Battery mass = 148 g (.148kg)<br>Height = 6 cm (.06m)<br>Gravity = 9.8 m/s <sup>2</sup><br>Velocity .5 m/s West<br>Answer in Joules | What is the kinetic energy of a <u><b>12 pound</b></u><br>football being thrown from a perfect spiral at<br>17 m/s <sup>2</sup> to a wide open receiver in the<br>endzone. 12 pounds = 5.44 kg |
|                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |

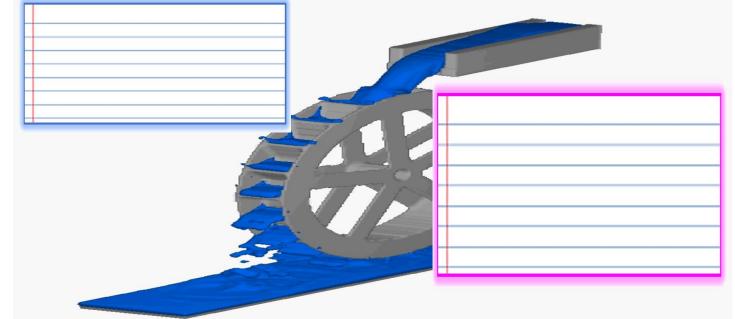
| Please calculate the potential energy of a pole-vaulter at the top of their vault. Their height was 3 meters and they weighed 77 kilograms. PE= mgh                                                                                                                 |   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| Please calculate the KE of a pole-vaulter. The run into the vault was 8.3 m/s <sup>2</sup> and they weighed 77 kilograms. KE= $\frac{1}{2}$ m * V <sup>2</sup> (Assume all energy in the vault was transformed into potential energy to make this question easier.) |   |  |
|                                                                                                                                                                                                                                                                     |   |  |
|                                                                                                                                                                                                                                                                     | _ |  |

What was the Mechanical Energy of the pole-vaulter? Remember to show your work! Describe Potential and Kinetic Energy below. Does the total energy ever change? Record your answer along the vault below.



### Part 4 Lesson 5 PE, KE, ME, Review

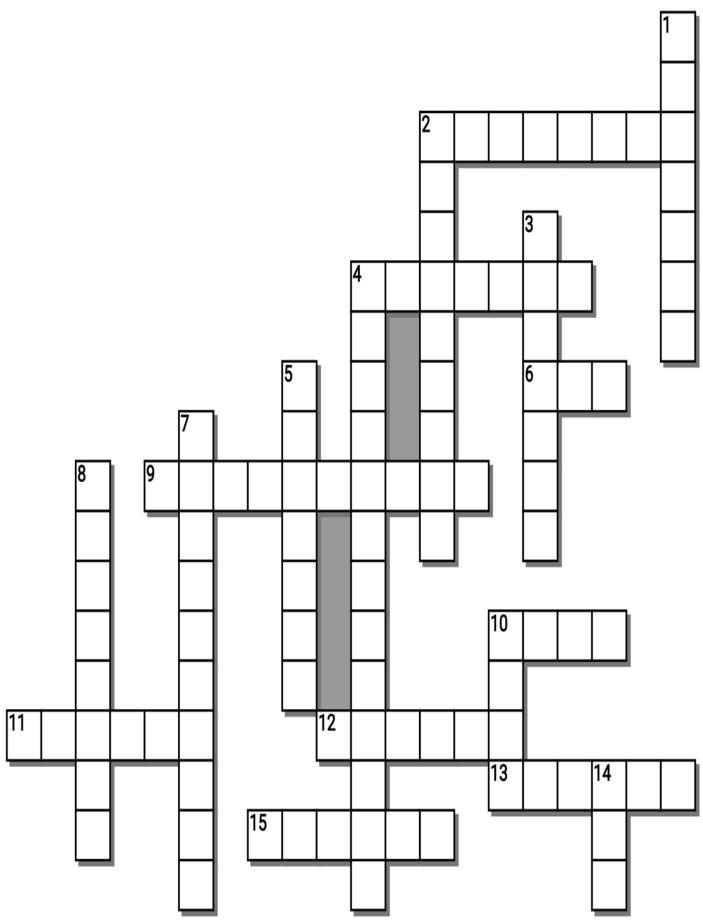

Please make a roller coaster in the space below. Please color code areas that coaster will have with high potential energy and kinetic energy.


Potential Energy = \_\_\_\_\_ Color Color

Kinetic Energy =



Sketch some forms of potential and kinetic energy below.






| Behavior / On-                                                                                                      | Number of moves                                                                                               | Complexity of                                                                                                     | Overall Neatness                                                                                                                                     | Working Together                                                                                        |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Task                                                                                                                | where PE is increased                                                                                         | Maze                                                                                                              | and Organization                                                                                                                                     |                                                                                                         |
| 20 pts                                                                                                              | 20 pts                                                                                                        | 20 pts                                                                                                            | 20 pts                                                                                                                                               | 20 pts                                                                                                  |
| A Amazing<br>behavior / On-<br>task the entire<br>class period and<br>working diligently<br>to complete the<br>maze | A Several moves /<br>(more than 2) ways<br>that PE was<br>increased / the maze<br>became longer were<br>used. | A Creative use of<br>ordinary materials<br>to extend maze.<br>More than just<br>blocks.                           | A Uses the entire<br>surface and marble<br>goes all over<br>space. Area was<br>neat and organized<br>/ Student cleaned-<br>up materials and<br>space | A Group worked<br>together great. No<br>conflicts and<br>everyone contributed<br>in some form.          |
| B Spoken to<br>once about<br>staying on-task /<br>behavior issues.                                                  | B Two moves were<br>used to increase PE<br>and extend maze /<br>path of travel.                               | B Some of use of<br>materials but<br>basic in its use                                                             | B Didn't use all of<br>the provided<br>space. A bit messy<br>and teacher had to<br>assist in clean-up                                                | B An issue or two /<br>group struggled to<br>get along. Teacher<br>had to assist group to<br>get along. |
| C. Spoken to<br>twice.                                                                                              | C One move was<br>used to increase PE<br>and extend maze                                                      | C Just blocks<br>used ramp / very<br>short / not a lot of<br>moves. Marble<br>made it most of<br>the way but DNF. | C A messy work<br>space and lack of<br>clean-up                                                                                                      | C Several incidents<br>occurred where the<br>group struggled to<br>agree                                |
| D/X Spoken to<br>more than twice<br>about behavior<br>and effort.                                                   | D/X. Maze was just a<br>ramp downhill /<br>Marble did not finish                                              | D/X Incomplete<br>/Short, Marble did<br>not finish                                                                | D/X Incomplete /<br>Messy /<br>Inappropriate use<br>of materials                                                                                     | D/X Complete<br>dysfunction in the<br>group.                                                            |

Comments:

\_Grade: \_\_\_\_



## Across

2. Potential Energy is the energy of \_\_\_\_\_

4. The more mass an object has, the \_\_\_\_\_ the force of attraction.

6. Gravity is an attractive force between \_\_\_\_\_ bodies, which depends only on the mass of the two bodies (M and m) and inversely on the square of the separation between the two bodies.

9. Energy due to position and motion; sum of potential and kinetic energies. Includes heat and friction.

10. Kinetic Energy □ Theenergy that matter has because of its \_\_\_\_\_ and motion. □ where m = mass of object □ v= speed of object □ KE = Energy in Joules

11. PE = mgh  $\Box$  PE= Energy (in Joules)  $\Box$  m= mass (in kilograms)  $\Box$  g= gravitational acceleration of the earth (9.8 m/s<sup>2</sup>)  $\Box$  h=

above earth's surface (in meters) 12. PE = mgh PE = Energy (in \_\_\_\_\_)  $\Box$  m= mass (in kilograms)  $\Box$  g= gravitational acceleration of the earth (9.8 m/s<sup>2</sup>)  $\Box$  h= height above earth's surface (in meters)

13. Kinetic energy is a \_\_\_\_\_ quantity; as it does not have a direction.

15. For KE, you must do exponents before multiplying. So \_\_\_\_\_\_ the velocity first, and multiply by half of the mass.

# Down

1. This is the energy of the motion.

2. The type of energy stored by an object as a result of its position

3. Velocity, acceleration, force, and

momentum are \_\_\_\_\_. A quantity having direction as well as magnitude

4. PE = mgh □ PE= Energy (in Joules) □ m= mass (in kilograms) □ g= \_\_\_\_\_

acceleration of the earth (9.8 m/s<sup>2</sup>)  $\Box$  h= height above earth's surface (in meters)

5. The force of attraction between all masses in the universe.

7. Gravity is an attractive force between two bodies, which depends only on the mass of the two bodies (M and m) and inversely on the square of the \_\_\_\_\_ between the two bodies.

8. Kinetic Energy  $\Box$  Theenergy that matter has because of its mass and motion.  $\Box$  where m = mass of object  $\Box$  v= \_\_\_\_\_ of object

□ KE= Energy in Joules

10. PE = mgh 
PE= Energy (in Joules) m

= \_\_\_\_\_ g = gravitational acceleration f the earth (9.8 m/s<sup>2</sup>)  $\Box$  h= height above mass (in kilograms) earth's surface (in meters)

14. \_ \_ \_ of Gravity  $F = G M m / r^2$ 

-----Teacher can remove this word bank to make puzzle more challenging------GRAVITY, GREATER, HEIGHT, JOULES, KINETIC, LAW, MASS, MASS, MECHANICAL, POSITION, POTENTIAL, TWO, GRAVITATIONAL, SCALAR, SEPARATION, SQUARE, VECTORS, VELOCITY

# PE, KE, ME Part 2 Review Game

Name:

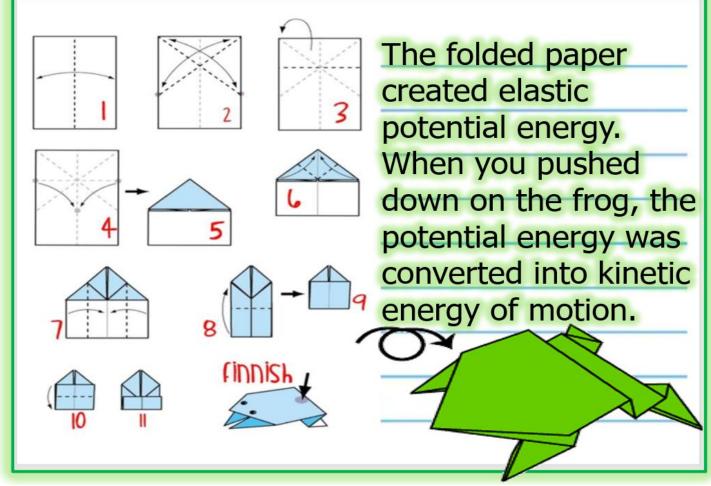
1-20 = 5 pts

\*20-\*25 \* = Bonus + 1 pt,

(Secretly write owl in correct space +1 pt) Final Question = 5 pt wager Score \_\_\_\_ / 100

| Final Question = $5$                |                |              |                | TDUCKN      |
|-------------------------------------|----------------|--------------|----------------|-------------|
| ENER                                | IT's ALL ABOUT | GYM CLASS or | KE             | TRUCKIN     |
| G                                   | ME             | PE           | Epping IT REAL | Bonus round |
|                                     |                |              |                | 1 pt each   |
| 1)                                  | 6)             | 11)          | 16)            | *21)        |
| .,                                  |                |              |                | -           |
|                                     |                |              |                |             |
|                                     |                |              |                |             |
|                                     |                |              |                |             |
|                                     |                |              |                |             |
|                                     |                |              |                |             |
| 0)                                  | 7)             | 10)          | 17)            | *00)        |
| 2)                                  | 7)             | 12)          | 17)            | *22)        |
|                                     |                |              |                |             |
|                                     |                |              |                |             |
|                                     |                |              |                |             |
|                                     |                |              |                |             |
|                                     |                |              |                |             |
|                                     |                | 10)          |                | ****        |
| 3)                                  | 8)             | 13)          | 18)            | *23)        |
|                                     |                |              |                |             |
|                                     |                |              |                |             |
|                                     |                |              |                |             |
|                                     |                |              |                |             |
|                                     |                |              |                |             |
|                                     |                |              |                |             |
| 4)                                  | 9)             | 14)          | 19)            | *24)        |
|                                     |                |              |                |             |
|                                     |                |              |                |             |
|                                     |                |              |                |             |
|                                     |                |              |                |             |
|                                     |                |              |                |             |
|                                     |                |              |                |             |
| 5)                                  | 10)            | 15)          | 20)            | *25)        |
|                                     |                |              |                | ,           |
|                                     |                |              |                |             |
|                                     |                |              |                |             |
|                                     |                |              |                |             |
|                                     |                |              |                |             |
|                                     |                |              |                |             |
| Final Question: 51                  | Point Wader =\ | NAGER        | l              |             |
| Final Question: 5 Point Wager=WAGER |                |              |                |             |

# Part 2 Potential and Kinetic Energy

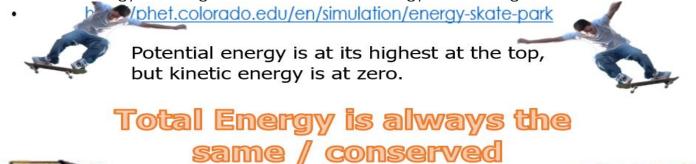

Name:

I am aware that I need to show all mathematical work in an organized manner to receive any credit for a question that involves calculations of any kind. Omitting / leaving out the units in the problem or at the end will also result in zero credit  $\diamond$  \_\_\_\_\_

Energy can either kinetic or potential.

Potential Energy: (PE) The energy stored by an object as a result of its position

- Potential Energy is the energy of position. Objects that are elevated have a high potential energy.
- Kinetic Energy is the energy of motion




#### PE = mgh

- PE = Energy (in Joules)
- m = mass (in kilograms)
- g = gravitational acceleration of the earth (9.8 m/s<sup>2</sup>)
- h = height above earth's surface (in meters)

Please visit the site below (Energy Skate Park) describe potential and kinetic energy using the half pipe below.

-Draw in a skateboarder and explain where their potential energy is the highest, and when their kinetic energy is the highest. Does their total energy ever change?



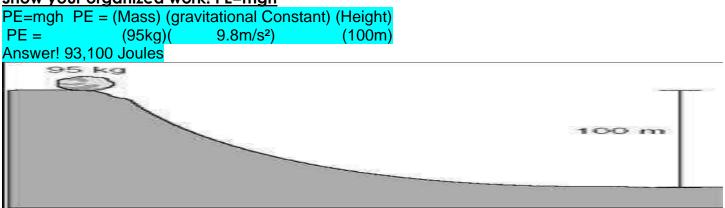


the skater travels back up the ramp

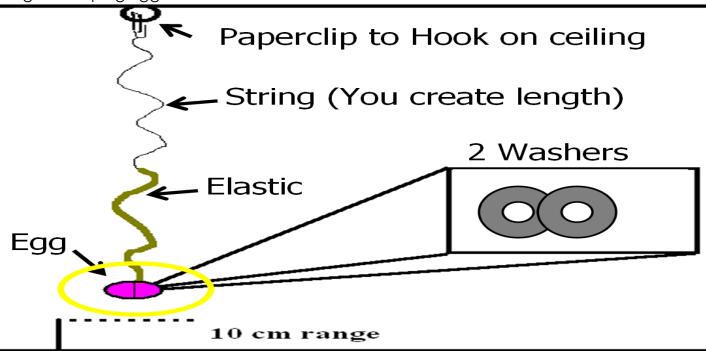
Gravity: The force of attraction between all masses in the universe.

- The more mass an object has, the greater the force of attraction.
- Law of Gravity  $F = G M m / r^2$
- Gravity is an attractive force between two bodies, which depends only on the mass of the two bodies (M and m) and inversely on the square of the separation between the two bodies.
  - Ex. (If you double the mass of the earth, its gravitational force will become twice as big; if you get 3 times further away from the earth, its gravitational force will be 3 times weaker.)

<u>Mechanical Energy</u> (ME) – Energy due to position and motion; sum of potential and kinetic energies. Includes heat and friction.


• Just add Potential Energy + Kinetic Energy.

|                                                         | <u>, , , , , , , , , , , , , , , , , , , </u> |
|---------------------------------------------------------|-----------------------------------------------|
| Calculate the potential energy for a 2 kg               | Calculate the potential energy of a shotput   |
| basketball dropping from a height of 3.5                | dropping from a height of 6 meters weighing   |
| meters with a velocity of 9.8 m/s <sup>2</sup> Find the | 5.44 kg with a velocity of 9.8 m/s².          |
| PE in Joules? PE=mgh                                    | - Find the PE in Joules? PE=mgh               |
| PE = mgh                                                | PE = mgh                                      |
| <mark>m= 2 kg</mark>                                    | <mark>m = 5.44 kg</mark>                      |
| $g = 9.8 \text{ m/s}^2$                                 | $g = 9.8 \text{ m/s}^2$                       |
| h= 3.5 meters                                           | <mark>h = 6 m</mark>                          |
|                                                         | $PE = (5.44kg) (9.8m/s^2) (6m)$               |
| $PE = 2kg \times 9.8m/s^2 \times 3.5 m$                 | PE = 319.87 Joules                            |
| PE = 68.6Joules                                         |                                               |
| Please show your work!                                  | Please show your work!                        |
| Calculate the potential energy of a hammer              | Part 2 Lesson 2 Bungee Jump Egg               |
|                                                         |                                               |


|                                               | 10                                                    |  |  |  |
|-----------------------------------------------|-------------------------------------------------------|--|--|--|
| dropping from a height of 60 meters           | Calculate the potential energy of the 1,025           |  |  |  |
| weighing 7.26 kg with a velocity of 9.8 m/s². | kg Perseverance Rover drop of 20 meters to            |  |  |  |
| - Find the PE in Joules? PE=mgh               | the Martian surface. Find the PE in Joules?           |  |  |  |
| PE = mgh                                      | PE=mgh Mars Gravity Constant = 3.721 m/s <sup>2</sup> |  |  |  |
| <mark>m = 7.26 kg</mark>                      | PE = mgh                                              |  |  |  |
| $g = 9.8 \text{ m/s}^2$                       | <mark>m = 1,025 kg</mark>                             |  |  |  |
| h = 60 m                                      | $g = 3.72 \text{ m/s}^2$                              |  |  |  |
| $PE = (7.26 kg) (9.8 m/s^2) (60 m)$           | h = 20 m                                              |  |  |  |
| PE = 4268.88 Joules                           | $PE = (1,025kg) (3.72m/s^2) (20m)$                    |  |  |  |
| or 4.2 Kilojoules                             | PE = 76,280 J / 76.28 kJ                              |  |  |  |
| Please show your work!                        | Please show your work!                                |  |  |  |

16

What's the potential energy of the rock? Use the equation in your journal. Answer is in Joules. **Show your organized work! PE=mgh** 



Bungee Jumping Egg



Activity! Instructions

Goal: For the egg to fall from the ceiling and come within 10 cm of the floor without crashing.

-Everyone has the same amount of bungee material (Elastic / Rubber Bands)

-You must measure the correct length of rope to land within the 10 cm range.

-You are not allowed any test jumps from the ceiling but may drop from eye height.

-You must determine rope length using the provided information.

-You may begin when given the materials and use the information on the next slide.

How long does your string need to be in centimeters?\_

Did your egg drop succeed? Why? <u>Answers will vary</u>

Please determine the Potential Energy of the Egg. (Don't forget PEMDAS)

- The Potential Energy of the Egg
  - Potential Energy = PE = mgh
    - (m)ass of the egg and washers + Elastic + String = .032kg

PE = .86 Joules

- (g) = (9.8 m/s<sup>2</sup>)
- (h) Height = 2.75 Meters

2.75 M

h

What will happen when you suspend a slinky and then drop it?

 $9.8 \text{ m/s}^2$ 

A.) The Slinky will drop as is with nothing interesting or unusual occurring.

B.) The Slinky will fly upwards because of the stored potential energy.

C.) The bottom of the Slinky will remain still for a brief second until a compression wave reaches it and then the Slinky falls as one. D.) Both ends will snap towards each other meeting in the middle and causing the Slinky to pancake.

Kinetic Energy

- The energy that matter has because of its mass and motion.
- where m = mass of object
- v = velocity of object

m

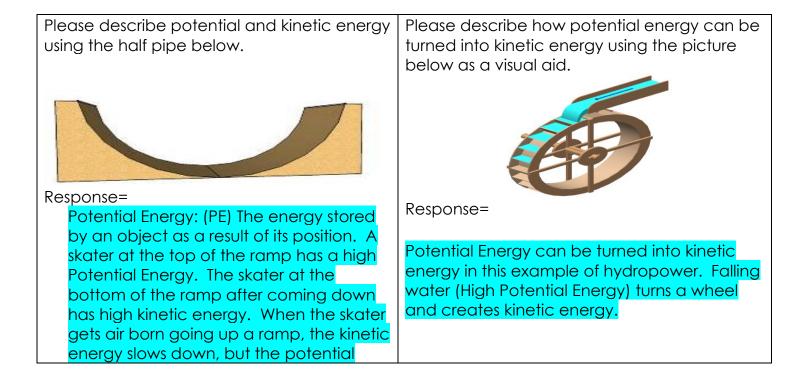
.032 Kg

• KE = Energy in Joules

 $KE = \frac{1}{2} * m * v^2$ 

- Do not forget your order of operations.
- PEMDAS
- For KE, you must do exponents (E) before multiplying (M). So square the velocity first, and multiply by half of the mass.

Kinetic energy


- Translational Energy: Motion from one location to another.
- Vibrational energy (sound)
- Electrical energy: Flow of electrons.
- Rotational energy.

Kinetic energy is a **scalar** quantity; as it does not have a direction.

Velocity, acceleration, force, and momentum are **vectors**. A quantity having direction as well as magnitude

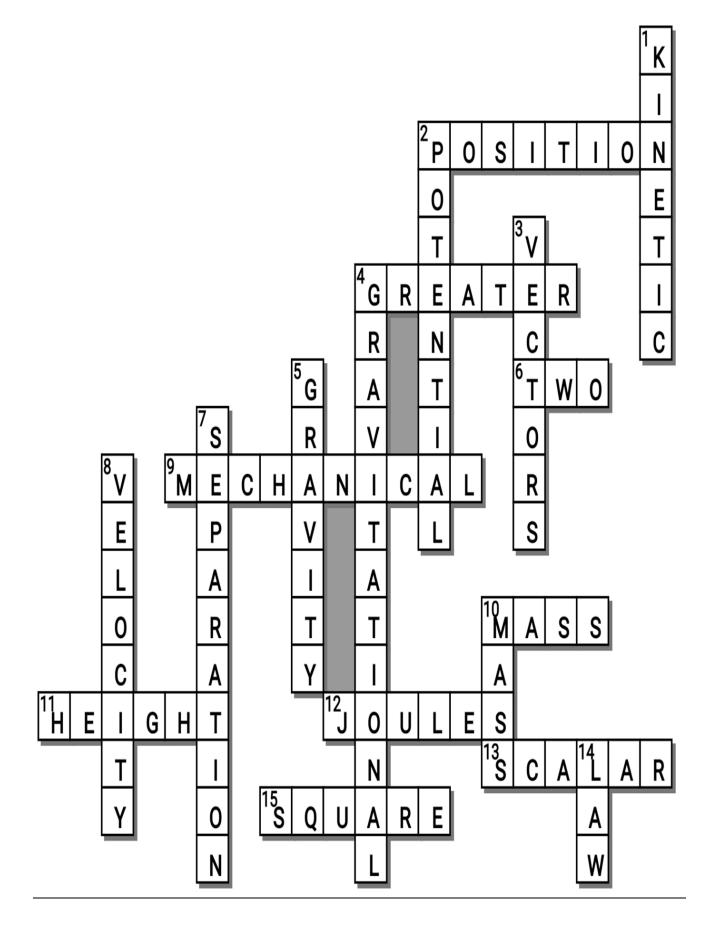
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>What is the kinetic energy of a 20 kilogram cannon ball traveling at 40 meters per second?</li> <li>-Please show your work!</li> <li>KE = 0.5 times 20 kg times (40) <sup>2</sup> Joules</li> <li>KE = 0.5 times 20 kg times 1,600 Joules</li> <li>KE = 16,000 Joules or 16kJ</li> </ul>                                                                                                                                                                                                                                                                                                                        |
| What's the kinetic energy of a 12 kilogram<br>frozen fish being tossed at 2 meters per<br>second?<br>• m = 12 kg<br>• v = 2 m/s<br>-Please show your work!<br>KE = 0.5 times 12 kg times (2) <sup>2</sup> Joules<br>KE = 0.5 times 12 kg times 4 Joules<br>KE = 6 kg times 4 Joules<br>KE = 24 J<br>What is the kinetic energy of a <u>12 pound</u><br>football being thrown from a perfect spiral at<br>17 m/s to a wide open receiver in the end<br>zone.<br>Need to convert 12 pounds to kilograms<br>12 pounds = 5.44 kg<br>KE = 0.5 times 5.4 kg times (17m/s) <sup>2</sup> Joules<br>KE = 2.7 x 289 J<br>KE = 780J |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|                                                                                                                                                                                                                                         | 19                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Please calculate the potential energy of a<br>pole-vaulter at the top of their vault. Their<br>height was 3 meters and they weighed 77<br>kilograms. PE= mgh<br>PE= mgh<br>PE = 77 kg* 9.8 m/s <sup>2</sup> * 3 m<br>PE = 2263.8 Joules | Please calculate the KE of a pole-vaulter. The<br>run into the vault was 8.3 m/s and they<br>weighed 77 kilograms. KE= ½ m * V <sup>2</sup> (Assume<br>all energy in the vault was transformed into<br>potential energy to make this question<br>easier.)<br>KE = ½ m * V <sup>2</sup><br>KE = .5* 77 kg * 8.3 m/s<br>KE = .5* 77 kg * 68.89 m/s<br>KE = 2652.2 Joules |
| What was the Mechanical Energy of the<br>pole-vaulter? Remember to show your work!<br>PE =2263.8J + KE=2652.2 J = 4,916 Joules                                                                                                          | Where is the kinetic energy the highest, and<br>when is the potential energy the highest?<br>Does the total energy ever change? Note-<br>When pole bends it becomes elastic<br>potential energy<br>POTENTIAL<br>POTENTIAL<br>KINETIC                                                                                                                                   |



|                                                                                                                                                                         | 20 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| energy increase.                                                                                                                                                        |    |
| <ul> <li>Potential Energy is the energy of position. Objects that are elevated have a high potential energy.</li> <li>Kinetic Energy is the energy of motion</li> </ul> |    |

Name some quantities that are... Which one has magnitude and direction?






| <b>Scalar Quantities</b>           | Vector Quantities            |  |
|------------------------------------|------------------------------|--|
| Have magnitude but<br>no direction | Have magnitude and direction |  |
| Distance                           | Displacement                 |  |
| Speed                              | Velocity                     |  |
| Mass                               | Weight                       |  |
| Energy                             | Acceleration                 |  |
| Density                            | Force                        |  |
| Power                              | Impulse                      |  |
| Length, Area, Volume               | Pressure                     |  |
| Time                               | Momentum                     |  |
| Temperature                        | Gravity                      |  |
| Work                               | Drag                         |  |

Mechanical Energy (ME): Energy due to position and motion.

• Sum of potential and kinetic energies, includes heat and friction. PE + KE = ME POSSES THE ABILITY TO do....



## Across

2. Potential Energy is the energy of \_\_\_\_\_

4. The more mass an object has, the the force of attraction.

6. Gravity is an attractive force between \_\_\_\_\_ bodies, which depends only on the mass of the two bodies (M and m) and inversely on the square of the separation between the two bodies.

9. Energy due to position and motion; sum of potential and kinetic energies. Includes heat and friction.

10. Kinetic Energy □ Theenergy that matter has because of its \_\_\_\_\_ and motion. □ where m = mass of object □ v= speed of object □ KE = Energy in Joules

11. PE = mgh  $\Box$  PE= Energy (in Joules)  $\Box$  m= mass (in kilograms)  $\Box$  g= gravitational acceleration of the earth (9.8 m/s<sup>2</sup>)  $\Box$  h=

\_\_\_\_\_ above earth's surface (in meters) 12. PE = mgh PE = Energy (in \_\_\_\_\_)  $\Box$  m=

mass (in kilograms)  $\Box$  g= gravitational acceleration of the earth (9.8 m/s<sup>2</sup>)  $\Box$  h= height above earth's surface (in meters)

13. Kinetic energy is a \_\_\_\_\_ quantity; as it does not have a direction.

15. For KE, you must do exponents before multiplying. So \_\_\_\_\_ the velocity first, and multiply by half of the mass.

# Down

1. This is the energy of the motion.

2. The type of energy stored by an object as a result of its position

3. Velocity, acceleration, force, and

momentum are \_\_\_\_\_. A quantity having direction as well as magnitude

4. PE = mgh  $\Box$  PE= Energy (in Joules)  $\Box$  m= mass (in kilograms)  $\Box$  g= \_\_\_\_\_ acceleration of the earth (9.8 m/s<sup>2</sup>)  $\Box$  h=

height above earth's surface (in meters) 5. The force of attraction between all masses

in the universe.

7. Gravity is an attractive force between two bodies, which depends only on the mass of the two bodies (M and m) and inversely on the square of the \_\_\_\_\_ between the two bodies.

8. Kinetic Energy □ Theenergy that matter has because of its mass and motion. □ where m = mass of object □ v= \_\_\_\_\_ of object

□ KE= Energy in Joules

10. PE = mgh  $\Box$  PE= Energy (in Joules) m

=\_\_\_\_\_ g = gravitational acceleration f the earth (9.8 m/s<sup>2</sup>)  $\Box$  h= height above mass (in

kilograms) earth's surface (in meters)

14. \_ \_ \_ of Gravity  $F = G M m / r^2$ 

-----Teacher can remove this word bank to make puzzle more challenging------GRAVITY, GREATER, HEIGHT, JOULES, KINETIC, LAW, MASS, MASS, MECHANICAL, POSITION, POTENTIAL, TWO, GRAVITATIONAL, SCALAR, SEPARATION, SQUARE, VECTORS, VELOCITY

|                                                                      |                                                  |                               | •                              | 23                        |
|----------------------------------------------------------------------|--------------------------------------------------|-------------------------------|--------------------------------|---------------------------|
| ENER                                                                 | IT's ALL                                         | GYM CLASS or                  | KE                             | TRUCKIN                   |
| G                                                                    | ABOUT                                            | PE                            | Epping IT REAL                 | Bonus round               |
|                                                                      | ME                                               |                               |                                | 1 pt each                 |
| 1)                                                                   | 6)                                               | 11)                           | 16)                            | *21)                      |
| C.) Energy can be                                                    | Twice as big,                                    | ,<br>Joules,                  | ,<br>Mechanical                | Movie Twlight             |
| either kinetic or                                                    | Three times                                      | <b>Kilograms</b>              | Energy                         |                           |
| potential.                                                           | weaker                                           | m/s <sup>2</sup>              |                                |                           |
|                                                                      |                                                  |                               |                                |                           |
| 2)                                                                   | 7)                                               | 12)                           | 17)                            | *22)                      |
| Position and Motion                                                  | D.)                                              | 19.9 kilojoules               | Letter A                       | Grave Digger              |
|                                                                      | Quadruple                                        |                               | Constant                       |                           |
|                                                                      | Quality                                          |                               | COnstant                       |                           |
| 3)                                                                   | 8)                                               | 13)                           | 18)                            | *23)                      |
| PE = mgh                                                             | E.) Hookes                                       | PE = mgh                      | False                          | Kitt from Night           |
|                                                                      | Law                                              | m = 15,103  kg                |                                | Rider                     |
| <mark>m = 5000 kg</mark>                                             |                                                  | $g = 1.62 \text{ m/s}^2$      |                                |                           |
| $g = 9.8 \text{ m/s}^2$                                              |                                                  | h = 1.02  m/s                 |                                |                           |
| h = 100  m                                                           |                                                  | PE = (15,103kg)               |                                |                           |
|                                                                      |                                                  |                               |                                |                           |
| PE = (5000  kg) (9.8)                                                |                                                  | $(1.62 \text{m/s}^2)$         |                                |                           |
| $m/s^2$ ) (100 m)                                                    |                                                  | (1048m)                       |                                |                           |
| PE = 4,900,000  Joules                                               |                                                  | PE = 25641269.28              |                                |                           |
| PE = 4,900 gigajoules                                                |                                                  | <mark>J / or 25,641 kJ</mark> |                                |                           |
| 41                                                                   | 0)                                               | 1.4)                          | 10)                            | *0.4)                     |
| 4)                                                                   | 9)                                               | 14)                           | 19)                            | *24)                      |
| $\frac{\text{KE} = 0.5 \text{ fimes } 12 \text{ kg}}{12 \text{ kg}}$ | $\frac{PE = (10 \mathrm{kg})}{(10 \mathrm{kg})}$ | Letter C                      | Letter D                       | Vaneloppe Von             |
| times (2) <sup>2</sup> Joules                                        | (9.8m/s <sup>2</sup> )                           | Potential Energy              | The total                      | <mark>Sweetz</mark>       |
| KE = 0.5 times 12 kg                                                 | <mark>(5m)</mark>                                |                               | mechanical                     |                           |
| times 4 Joules                                                       | <mark>PE = 490</mark>                            |                               | energy in a                    |                           |
| <mark>KE = 6 kg times 4</mark>                                       | Joules                                           |                               | <mark>system (i.e., the</mark> |                           |
| Joules                                                               |                                                  |                               | sum of the                     |                           |
| KE = 24 Joules                                                       |                                                  |                               | potential plus                 |                           |
|                                                                      |                                                  |                               | <mark>kinetic</mark>           |                           |
|                                                                      |                                                  |                               | <mark>energies) remains</mark> |                           |
|                                                                      |                                                  |                               | constant.                      |                           |
| 5)                                                                   | 10)                                              | 15)                           | 20)                            | *25)                      |
| ME = PE + KE                                                         | <mark>Potential,</mark>                          | <mark>A=Potential</mark>      | <mark>Letter D</mark>          | <mark>The Delorean</mark> |
| ME = 7,000J + 3,000 J                                                | Kinetic,                                         | <mark>B=Kinetic</mark>        | Mass and                       |                           |
| ME = 10,000 Joules.                                                  | <mark>Kinetic</mark>                             |                               | Velocity                       |                           |
| 10 kilojoules                                                        |                                                  |                               |                                |                           |
| Final Quantiana, C Dain                                              |                                                  |                               | •                              | ·I                        |

Final Question: 5 Point Wager \_\_\_\_=WAGER

KE = 0.5 times 12 kg times (2) <sup>2</sup> Joules

- KE = 0.5 times 12 kg times 4 Joules
  KE = 24 Joules

Copyright © 2024 SlideSpark .LLC All Rights Reserved

23