Part 4 Volume and Density

Name: Due:

Some Water Basics		
Science uses	as a part of the metric system.	
1 cubic centimeter of water weighs		
Example 1,000 ml w	eighs 1,000 grams	
(1 liter) = (1 ki	logram)	
Volume: The	space an object occupies.	
Volume is also the Matter is anything that ha	, that matter occupies. s mass and takes up space.	

Important note: Mass and weight are _____

-Mass is a measurement of the amount of matter something contains.

-Weight deals with the pull of gravity.

Even if you are weightless in space you still have mass.

How do you find the volume of a cube?

• Length x Width x Height = ____cm³

What is the volume of a soda can?

Density Formula

Please determine the densities of the following characters. Who is most dense?

Density of more than one = _____

Density A-L

Find the density of the mystery objects labeled A-Z. Please use multiple types of scales and balances and methods to find volume. Record the density in g/cm³.

Remember! Density = Mass divided by Volume D=m/v

Find Mass using a... Triple Beam balance, Digital Balance, Equal Balance, Spring Scale, Other. You need to use each one at least twice.

Letter	Device used to find mass	Mass g	Divide ÷	Volume ml or cm³	Density g/cm³	Float? Y/N
A			÷			
В			÷			
С			÷			
D			÷			
E			÷			
F			÷			
G			÷			
Н			÷			
			÷			
J			÷			
K			÷			
L			÷			
Letter	Device Used to Find Mass	Mass g	÷	Volume ml or cm³	Density g/cm³	Float? Y/N

• Density is defined as mass per unit ______It is how much the mass is confined in a substance. It helps show if ______are packed closely together or spread far apart. To measure density, measure the mass on a balance, calculate volume and ______the two. This process does not involve a chemical ______and is thus a ______ property. Another way to measure density is by using its displacement of ______

What is the density of an objects whose mass is 500 grams and displaces 250 ml of water? M	What is the density of an objects whose mass is 200 grams and displaces 250 ml of water?
Density = = V	Density =
Will the object float in water? Yes / No	Will the object float in water? Yes / No
What is the volume of the stone by water displacement?	What is the volume of the stone by water displacement?

Please calculate the density of the student volunteer.

Density = Mass (g) divided by volume (cm³)

Example- 45,000g divided by 40,000cm3 = 1.125 g/cm³

Name of Student ______Weight in pounds ______x .453 = ____kg = ___gName of Student ______Weight in pounds ______x .453 = ___kg = ___g

To convert lbs to kg, multiply the given lbs value by 0.45359237 kg. For example, to convert 5 lbs to kilogram, multiply the given 5 lbs by 0.45359237 kg.

Name of Student	Water Displaced / Volume
Name of Student	Weight Displaced / Volume

Name of Student	grams	_divided by cm3	. = .	g/ cm³
Name of Student	grams	_divided by cm3	. = .	g/ cm³

Name of Student_____ Density_____ Name of Student_____ Density_____

Demo: Magic Ice Cube? (Optional)

- Teacher will place ice cubes into the two different containers filled with fluid.
- Observe what happened and try to explain.

Explain the	visual	below	as it	pertains	to	density?

Describe why the eggs are behaving this way?

Density Quiz	over	Name:
1)	2)	3)
4)	5)	6)
7)	8)	9)
10)	*11) 5 pts	
Seere (10 recipto Ecrete) -		

Score (10 points Each) =

Copyright © 2024 SlideSpark .LLC All Rights Reserved

Part 4 Volume and Density

Some Water Basics

Science uses <mark>water</mark> as a part of the metric system. 1 cubic centimeter of water weighs <mark>1 gram</mark>. Example 1,000 ml weighs 1,000 grams (1 liter) = (1 kilogram)

Volume: The three-dimensional space an object occupies.

Volume is also the <mark>space</mark> that matter occupies. Matter is anything that has mass and takes up space.

Important note: Mass and weight are different. -Mass is a measurement of the amount of matter something contains.

-Weight deals with the pull of gravity.

Even if you are weightless in space you still have mass.

How do you find the volume of a cube?

• Length x Width x Height = $__cm^3$

Name: Due:

What is the volume of a soda can? Height = 12 cm, Radius = 3cm $V = \pi r^2 h$ $V = \pi 3^2 h$ V = 3.14 (9) (12) = 339.12 cm³

The volume of the two graduated cylinders is 3.4 ml and 5.0 ml. The curve of water is called a meniscus and you should measure at the bottom of the curve. The water displacement was 1.6 ml which is the volume of the toy scuba diver.

Find the Volume of four Irregular shaped objects? What is the volume of them below? Answers will vary using water displacement

Density: How much mass is contained in a given volume. We use grams/cm³ (grams per cubic centimeter) Density = Mass divided by volume

D = Density m = mass V = velocity

Density Formula

Please determine the densities of the following characters. Who is most dense?

An object will float in water.

Density of less than one = float. Density of more than one = sink.

Density A-L

Find the density of the mystery objects labeled A-Z. Please use multiple types of scales and balances and methods to find volume. Record the density in g/cm³. Remember! Density = Mass divided by Volume D=m/v

Find Mass using a... Triple Beam balance, Digital Balance, Equal Balance, Spring Scale, Other. You need to use each one at least twice.

Letter	Device used to find mass	Mass g	Divide ÷	Volume ml or cm³	Density g/cm³	Float? Y/N
А			÷			
В			÷			
С			÷			
D			÷			
E			÷			
F			÷			
G			÷			
Н			÷			
			÷			
J			÷			
К			÷			
L			÷			
Letter	Device Used to Find Mass	Mass g	÷	Volume ml or cm³	Density g/cm³	Float? Y/N

Density is defined as mass per unit <u>Volume</u>. It is how much the mass is confined in a substance. It helps show if <u>atoms</u> are packed closely together or spread far apart. To measure density, measure the mass on a balance, calculate volume and <u>divide</u> the two. This process does not involve a chemical <u>change</u> and is thus a <u>physical property</u>. Another way to measure density is by using its displacement of <u>liquid</u>.

What is the density of an objects whose mass	What is the density of an objects whose mass
is 500 grams and displaces 250 ml of water?	is 200 grams and displaces 250 ml of water?
M (500a)	200 a
Density = = <mark>2 g/cm³</mark>	Density = = . <mark>8 g/cm³</mark>
V (250ml)	250ml
Will the object float in water? Yes / <mark>No</mark>	Will the object float in water? Yes / No

Please calculate the density of the student volunteer. Answers will vary Density = Mass (g) divided by volume (cm³) Example- 45,000g divided by 40,000cm3 = 1.125 g/cm³

Name of Student ______ Weight in pounds ______ x .453 = ____kg = ____g Name of Student ______ Weight in pounds ______ x .453 = ____kg = ____g

To convert lbs to kg, multiply the given lbs value by 0.45359237 kg. For example, to convert 5 lbs to kilogram, multiply the given 5 lbs by 0.45359237 kg.

Name of Student	Water Displaced / Volume
Name of Student	Weight Displaced / Volume

Name of Student _	grams _	divided by cm3_	=	g/ cm ³
Name of Student _	grams _	divided by cm3_	=	g/ cm ³

Name of Student	Density
Name of Student	Density

Demo: Magic Ice Cube? (Optional)

- Teacher will place ice cubes into the two different containers filled with fluid.

- Observe what happened and try to explain.

One of the containers was not water, it was alcohol. Ethyl Alcohol has a density of .79 g/cm³ Water has a density of 1g/cm³. Therefore, the ice won't float in the alcohol.

Explain the visual below as it pertains to density?

Describe why the eggs are behaving this way?

The density of the water was increased when salt was added. An egg floats in salt water because the mass of the salt water displaced is equal to the mass of the egg. The egg's density is less than the density of the salt water. When an egg is placed in fresh water it immediately sinks to the bottom of the container it is placed in.

1)	2)	3)

1 gram	1,000 gram or 1kg	53 ml
4) 24cm 3	⁵⁾ 3 Liters or 3,000 ml	⁶⁾ 4 ml
7) mass D == grams/cm ³ volume	8) Less than 1 g/cm ³	9) 145 g / 125 cm ³ = 1.16 g/cm ³
10) Edible oil less dense, Honey, dishwashing more dense	*11) bonus Animal Jam	

Copyright © 2024 SlideSpark .LLC All Rights Reserved