Part 4 Work Bundle

138.91

140.91

Samarium 150.36

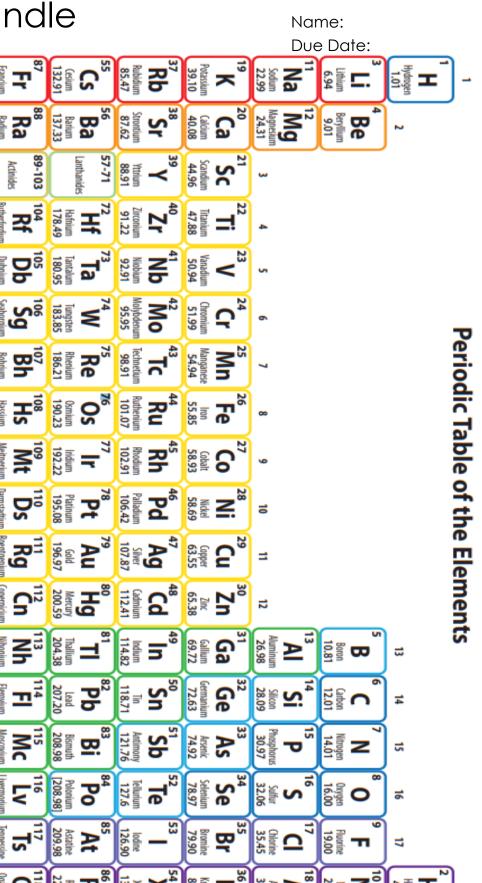
Thulium 168.93

Ytterbium 173.06

Lutetium 174.97

8[≅]

Alkali Metal


Alkaline Earth

Transition Metal

Basic Metal

Metalloid

Noble Gas

Part 4 Lesson 1 the Mole and Molar Mass

Mole (mol): A standard scienti such as atoms. 1 mol =	fic unit for measuring large quo	untities of entities
Mole: The number of atoms de called Avogadro's number	etermined to be found in 12 gro	ams of Also
How many atoms are in a mol Write in long hand		
	e is the for all substa weight of that substance in gro	
Please complete the following	g during the slideshow Part 4 ab	out molar mass.
What is the molar mass of NaOH?	What is the molar mass of NH4?	What is the molar mass of SO ₂ ?

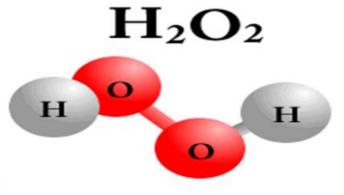
Part 4 Lesson 2 Molar Conversions - Complete the notes below as described in the slideshow.

Atoms Mols Grams or Molecules

Convert from moles to atoms,	the molar amount by Avogadro's number.
Convert from atoms to moles,	the atom amount by Avogadro's number
Please convert from grams	to moles below
	ole of water
	gram of water
Please convert from moles t	o grams below
6 moles of O2 x1 mole	of 02 g of O2 e of O2
If a scientist wants to know h	ow many atoms are in six moles of sodium
6.02×10^{23}	- 1024 orbanes of No.
1 mole	=x 10 ²⁴ atoms of Na
What's the molecular mass o	of Na ₃ PO ₄ ?
3(g/mol) + 31 g/mol +	4 (g/mol) =
How many atoms are in 6.2	moles of Al?
6.2 moles of Al x1 mo	atoms Al x 10 ²⁴ le Al
How many atoms are in 3.5	moles of Tin (Sn)?
mols Sn x	oms Sn x 10 ²⁴ ol Sn
How many moles are in 90 g	rams of NaOH? NaOH 1 mol = grams
•	ole mol NaOH grams

How many mols are	e in 10 grams of N	lickel? Find I	molar mass of Ni
1 me	ol Ni		
g Ni x	= _	mol	Ni
How many atoms o	re in .17 mol of N	i?	
and NE a	atoms of N		1023 NI:
MOI NI X	1mol Ni	=	x 10 ²³ atoms Ni
Calculate the num Molar mass of CO		-	ırbon monoxide)?
gram of CO x	Mole grams		_ moles
How many grams o Neon has molar mo		of Neon gas	?
moles Ne x	grams = mole	gra	ms
Convert 3 moles of	As2S3 to grams.	Molar Mas	s of As2S3 is g/mol
mol As2S3 x	g As2S3 mol As2S3	- =	_g As2S3
 Converting frommass ofmass of Converting from the Converting from volume constant Converting from constant, 22.4L. Converting from your particle value Converting from converting from governing from the converting from the converting from the converting from the converting from 	n mass (grams) to most the compound as a moles to mass (grams) and moles to mass (grams) to moles to volume (liters) to moles to volume (liters) and particles (atoms, moles by	oles:	your initial mass by the y the periodic table your initial mole value by ed by the periodic table. ur initial volume by the molar our mole value by the molar volume rmula units) to moles: ules, or formula units):

Part 4 Lesson 3 Subscripts and Coefficients


Coefficients tell us the number of _______. (The number of Moles)

Subscripts tell us how many _____ or ions there are within a compound. Subscripts of ____ are ____ written – they're understood.

Which are the subscripts? And which are the coefficients below?

 $2 H_2 + O_2 \longrightarrow 2 H_2O$

How many hydrogen atoms are in hydrogen peroxide?

How many hydrogen atoms are in 2 hydrogen peroxide?

 $2H_{2}O_{2}$

How many elements are in the molecule below? Name each one?

How many hydrogen, Chlorine, and Oxygen atoms are in 4HClO₄?

HCIO4 4HCIO4

2AI₂(SO₄)₃

How many Aluminum, Sulfur, and Oxygen atoms are in 2Al₂(SO₄)₃?

How many total atoms and atoms of each element are in the molecules below. **Hint-the total atoms and atoms of each element when added together need to be the same.** Law Conservation of Matter!

2KClO ₃	Total Atoms=	K=	CI=	O=
6H ₂ O	Total Atoms=	0=	H=	
4Al ₂ O ₃	Total Atoms=	Al=	O=	
2C6H8O7	Total Atoms=	C=	H=	O=
6Na ₃ C ₆ H ₅ O ₇	Total Atoms=	Na=	C= H=	O=
3CCl ₄	Total Atoms=	C=	CI=	
12HNO ₃	Total Atoms=	N=	H=	O=

Be proactive and work in your journal in real time to get the answers. These are hard.

- https://www.youtube.com/watch?v=PQamMsq79F0

Please view the video for assistance on the first four questions and then you're on your own for 6-10.

Molecule	# of Total Atoms	Atoms of eac	ch Element		
8H ₂ O		H=	0=		
3CCl ₄		C=	CI=		
11Be(OH) ₂		Be=	0=	H=	
5 (NH ₄) ₃ PO ₄		N=	H=	P=	O=
H ₂ SO ₄		H=	S=	0=	
Si(HCO ₃) ₄		Si=	H=	C=	O=
2AI(CO ₂) ₃		Al=	C=	0=	
2HNO ₃		H=	N=	0=	
KMnO ₄		K=	Mn=	0=	
K ₂ SO ₄		K=	S=	0=	
7H ₃ PO ₄		P=	H=	0=	
4Na ₂ CO ₃		Na=	C=	0=	

Molecule	# of Total Atoms	Atoms	of each Elen	nent		
5AgNO₃		Ag=	N=	0=		
Ni(CH ₃ CO ₂) ₂		Ni=	C=	0=	H=	
2NH ₄ NO ₂		N=	0=	H=		
CO ₂ (SO ₄) ₃		S=	C=	0=		
4LiClO ₃ NH ₃		Li=	Cl=	0=	N=	H=
4SF ₂		S=	F=			
NCI3Fe(CHCO2)2		N=	Cl= Fe=	C=	0=	H=
5NaHCO₃		Na=	C=	O=	H=	
2 Carbon Tetrachloride		C=	CI=			
2Ag ₂ CrO ₄		Ag=	Cr=	0:	•	
1/2 P ₂ O ₅		P=	0=	=		

Part 4 Lesson 4 Balancing Chemical Equations

Chemical Chan	-	-	ostances into	other substa	nces throug	gh a
It de It al	is what escribes so desc	uations. happens in a common what you ribes the ribes the	with	nand ach (s) (l) (g)	 with	٦.
Balancing a che the quantity of _				ng the mathe	ematical rel	ationship between
Which are the re	eactant	s? And which o	are the prod	ucts?		
	+		React	on	-	
CH ₄	+	202		CC) ₂ +	+ 2H ₂ O
In any physical o Ma ⁻	tter can That side (be changed	from one for ed to have th	n to another. e same amo	unt of cher	nicals on each
NaOF	+	H ₂ SC)₄ →	Na ₂	SO	+ H ₂ O

Begin balancing chemical equations by putting numbers (coefficients) in front of them. Example H₂O on one side could become 2H₂O

Remember that each side needs to have same number of Hydrogen and Oxygen

Note – Don't change the subscript Example H₂O becomes H₃O Please use the provided spaces to balance the chemical equations covered in class.

	•	•		
We'll end up	doing	this first	one twice	(O)

NaOH	+ H ₂ S	O ₄ → N	la ₂ SO ₄ +	H_2O
Naun	+ n23		1a2504+	n ₂ ∪

Element	Before	After
Na		
0		
Н		
S		Fi.

NaOH + H	SO₄→ Na	12SO4+ H2O
----------	---------	------------

Element	Before	After
Na		
0		
Н	8	
S		

Element	Before	After
С	ah.	
Н	127	
0		

NaCl + BeF2	> NaF +	BeCl2
-------------	---------	-------

Element	Before	After
Na		
Cl		
Be		
F		3/

Before	After
A.	
*	
	Before

_ Na + __Cl → ___ NaCl

Why?

Please try and balance these two unbalanced chemical equations.

Tiedse if and balance inese two enbalances energical equations:								
H2 +_	_ O2 → _	_ H2O	AI +	_Cl2 →	AICl3			
Element	Before	After	Element	Before	After			
Element	Before	After	Element	Before	After			

$CO_2 +H_2O =C_6H_{12}O_6 +O_2$							
Element	Before	After					
С							
Н							
0							

Please try and balance these two unbalanced chemical equations.

N ₂ +	$\underline{\hspace{1cm}}$ $H_2 \rightarrow$	NH ₃	$H_2 + $	$O_2 \rightarrow$	• H ₂ O
Element	Before	After	Element	Before	After
Element	Before	After	Element	Before	After
Na +	$H_2O \rightarrow N_2$	aOH +H ₂	KClO ₃	→KC	l + O ₂
Element	Before	After	Element	Before	After
Element	Before	After	Element	Before	After
NaCl + _	$_{F_2} \rightarrow _{N}$	IaF+Cl ₂	Al + _	$_{O_2} \rightarrow _{$	$_{\rm Al_2O_3}$
AI + HCI → AICI3 + H2			NH4NO3 -)	• N ₂ +	O2+ H2O

$C_2H_4O_2 + \bigcirc O_2 \rightarrow \bigcirc CO_2 + \bigcirc H_2O$
$ZnSO_4 + Li_2CO_3 \rightarrow ZnCO_3 + Li_2SO_4$
$V_2O_5 + \Box CaS \rightarrow \Box CaO + V_2S_5$
$Mn(NO_2)_2 + BeCl_2 \rightarrow Be(NO_2)_2 + MnCl_2$
AgBr + GaPO₄ → Ag₃PO₄ + GaBr₃
$S_8 + \bigcirc O_2 \rightarrow \bigcirc SO_2$
Fe + $AgNO_3 \rightarrow Fe(NO_3)_2 + Ag$
AlBr ₃ + K → KBr + Al
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\boxed{ FeO + PdF_2 \rightarrow FeF_2 + PdO}$
$FeO + PdF_2 \rightarrow FeF_2 + PdO$ $P_4 + Br_2 \rightarrow PBr_3$ $LiCI + Br_2 \rightarrow LiBr + Cl_2$ $PbBr_2 + HCI \rightarrow HBr + PbCl_2$ $CoBr_3 + CaSO_4 \rightarrow CaBr_2 + Co_2(SO_4)_3$ $Na_3P + CaF_2 \rightarrow NaF + Ca_3P_2$

Part 4 Review Game

Name: Due: Today

Score ____ / 100

THE SCRIPT KEEPER	THE MORE YOU KNOW	BALANCNING ACT	BLANK STARE	NAME THAT COMPOUND Bonus round
1)	6)	11)	16)	1 pt each *21)
2)	7)	12)	17)	*22)
31	Q1	13)	18)	*23)
3)	8)	13)	10)	23)
4)	9)	14)	19)	*24)
5)	10)	15)	20)	*25)

Final Question Wager	/5 Answer:	
· ·		

Part 4 Work Bundle

Name:

Due Date:

														<u> </u>				-
*Lant	꾸	francium 87	CS	caesium 55	85,468	교	rubidium	39.095	₹ 3	22.990 potassium	Na	sodium	6.941	⊏.	3	1,0079	E -	hydroden
*Lanthanide series	Ra	88 mulber	Ba	56	87.62	ည် န	strontium	La La	2	24.305	Mg	magnesium 12	9,0122	Ве	beryllium 4			
series	*	89-102	*	57-70														
2621 Iantharum	Ļ	lawrencium 103	174.97	ntetum 71	88.906	٧ ٤	yttrium	C	2 2	Scandum								-
			178.49	hafnium 72	91.224	¥ 5	ziroonium	47.967	! 22	ttanium								20.
[262] prassos/priver 59 Prassos/priver 140.91 protectinium 91 Pa 231.04	50 of 165	n dubnium 105	77	99 SQ			niobium	50 <	2 3	vanadum								30
1 =1 1	Sg	seaborgium 106	183.84	tungsten 74	95.94	Z *	molybdenum			-								No.
Pm promethum nepumbum 93		n bohrium 107	100					24 Sep 13		_								18
269 m samadum 62 1 Sm 190.36 publicinium 94 Pu 1241		hassium 108	2				2			7								8
151.96 3 Smortcum 95 95		neitnerium 109		indium 77	-	017	-		-0	oohalt								3.9
m gadolinum 64 Gd	Uun	ım ununnillum 110	195.00	78	-	75			28	-								
	nUuu	ununun 111	8 A			5.0			30									3
1 (27) 1 (25) 1 (25)	duUub	ium unurb	200.59	marcury 80			-		- X	+								
	ਰ	-		-	-					1	>	alm alm	10.	_	60			
Holmann 67 Ho 164.93 elitslethinn 99	_	_	204.38		-		_			_			-			4		
	puq	unquadum 114	Pb	8 E	118.71	ည	5 =	98) ₂₂	28.086 ermanlum	<u>S</u>	14	12.011	ဂ	carbon 6			
Tm 168.93 mondskevium 101			208.98	83	121.76	ડ -	antimony	AS	2 ස	30.974 grsenic	ס	15	14.007	Z	ntrogen 7			7
ytterbum 70 173.0d nobelium 102			Po	potonium 84	127.60	J 8	delurium	# (V	2	32.065 selenium	ഗ	16	15.999	0	8 oxygen			8
			At Dist	astatine 85	126.90	_ e	odine S	<u> </u>	J ₃₃	35.453 bromine	<u>Ω</u>	thorine	18,998	T	9			
			R	radon 86	131.29	× ¥	xenon	3 2	36	39,948 krypkyn	Ą	18	20,180	Ne	10	4,0026	Ľ ~	helum

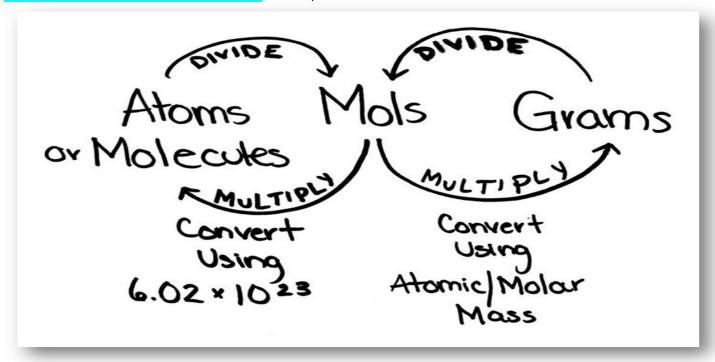
Part 4 Lesson 1 the Mole and Molar Mass

Mole (mol): A standard scientific unit for measuring large quantities of small entities such as atoms.

 $1 \text{ mol} = 6.02 \times 10^{23}$

Mole: The number of atoms determined to be found in 12 grams of Carbon-12. Also called Avogadro's number

How many atoms are in a mole? Write in long hand 602 000 000 000 000 000 000 000


The number of atoms in a mole is the same for all substances.

It is the molecular weight of that substance in grams.

Please complete the following during the slideshow Part 4 about molar mass.

What is the molar mass of	What is the molar mass of	What is the molar mass of	ı
NaOH?	NH4\$	SO ₂ ?	ì
Na is 23 + O is 16 + H is 1 =	N is 14, the 4 H's are 1		ı
Molar of Sodium Hydroxide =	14+1+1+1+1 = <mark>18 g/mol</mark>	32+16+16 = <mark>64 g/mol</mark>	ì
<mark>40 g/mol</mark>			ı
			1

Part 4 Lesson 2 Molar Conversions - Complete the notes below as described in the slideshow.

Convert from moles to atoms, multiply the molar amount by Avogadro's number.

Convert from atoms to moles, divide the atom amount by Avogadro's number

Please convert from grams to moles below

1 mole of water
101 g of water x ----- =
$$\frac{5.56}{18}$$
 mole of water
 $\frac{18}{18}$ gram of water

Please convert from moles to grams below

If a scientist wants to know how many atoms are in six moles of sodium...

$$6.02 \times 10^{23}$$

6 moles x ----- = $\frac{3.61}{1} \times 10^{24}$ atoms of Na 1 mole

What's the molecular mass of Na₃PO₄?

$$3(\frac{23}{23}) = \frac{164}{20} = \frac$$

How many atoms are in 6.2 moles of Al?

$$6.02 \times 10^{23}$$
 atoms Al 6.2 moles of Al x ----- = 3.7×10^{24} 1 mole Al

How many atoms are in 3.5 moles of Tin (Sn)?

$$6.02 \times 10^{23}$$
 atoms Sn
3.5 mols Sn x ----- = 2.1 x 10^{24}
1 mol Sn

How many moles are in 90 grams of NaOH? NaOH 1 mol = $\frac{40 \text{ grams}}{1000 \text{ grams}}$

How many mols are in 10 grams of Nickel? Find molar mass of Ni

How many grams are in 1.25 moles of Neon gas?

Neon has molar mass of 20 g/mol.

Convert 3 moles of As2S3 to grams. Molar Mass of As2S3 is 246 g/mol

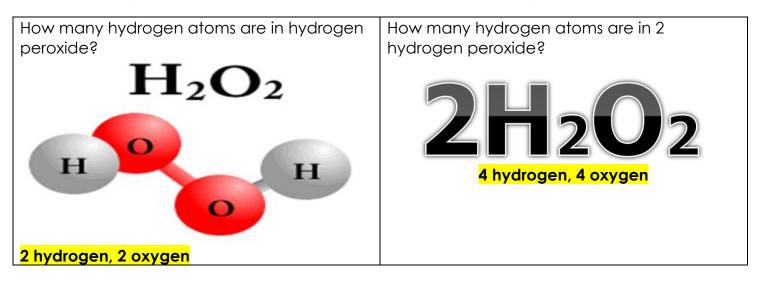
- Converting from mass (grams) to moles: Divide your initial mass by the molar mass of the compound as determined by the periodic table.
- Converting from moles to mass (grams): Multiply your initial mole value by the molar mass of the compound as determined by the periodic table.
- Converting from volume (liters) to moles: Divide your initial volume by the molar volume constant, 22.4 L.
- Converting from moles to volume (liters): Multiply your mole value by the molar volume constant, 22.4L.
- Converting from particles (atoms, molecules, or formula units) to moles: Divide your particle value by Avogadro's number, 6.02×10²³.
- Converting from moles to particles (atoms, molecules, or formula units): Multiply your mole value by Avogadro's number, 6.02×10²³.

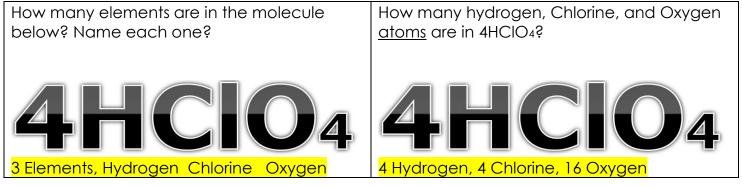
Coefficients tell us the number of molecules. (The number of Moles)

Subscripts tell us how many atoms or ions there are within a compound.

Subscripts of 1 are never written – they're understood.

Which are the subscripts? And which are the coefficients below?

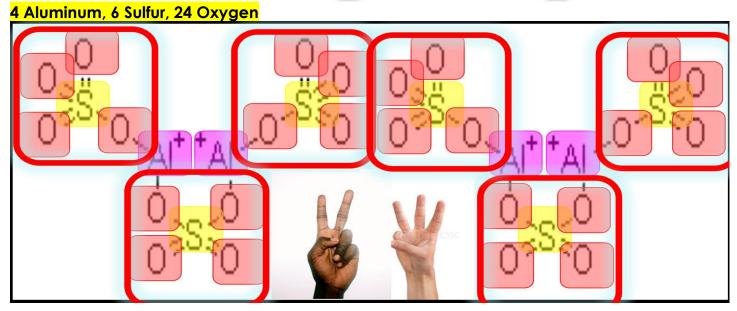

Coefficients of 1 are never written - they are understood.



Coefficients tell us the number of molecules.

Subscripts tell us how many atoms or ions there are within a compound.

Subscripts of 1 are never written — they're understood


How many <u>elements</u> are in 2Al₂(SO₄)₃?

2AI₂(SO₄)₃

3 Elements - Aluminum, Sulfur, Oxygen

How many Aluminum, Sulfur, and Oxygen atoms are in 2Al2(SO4)3?

2Al₂(SO₄)₃

2KClO ₃	Total Atoms= <mark>10</mark>	K= 2	CI= <mark>2</mark>	O= <mark>6</mark>
6H ₂ O	Total Atoms= <mark>18</mark>	0= <mark>6</mark>	H= <mark>12</mark>	
4Al ₂ O ₃	Total Atoms= <mark>20</mark>	Al= <mark>8</mark>	O= <mark>12</mark>	
2C ₆ H ₈ O ₇	Total Atoms= <mark>42</mark>	C= <mark>12</mark>	H= <mark>16</mark>	O= <mark>14</mark>
6Na ₃ C ₆ H ₅ O ₇	Total Atoms= <mark>126</mark>	Na= <mark>18</mark>	C= <mark>36</mark> H= <mark>30</mark>	O= <mark>42</mark>
3CCl ₄	Total Atoms <mark>=15</mark>	C= 3	CI= <mark>12</mark>	
12HNO ₃	Total Atoms= <mark>60</mark>	N= <mark>12</mark>	H= <mark>12</mark>	O= <mark>36</mark>

How many total atoms and atoms of each element are in the molecules below. **Hint-the total atoms and atoms of each element when added together need to be the same.** Law Conservation of Matter!

Be proactive and work in your journal in real time to get the answers. These are hard.

- https://www.youtube.com/watch?v=PQamMsq79F0

Please view the video for assistance on the first four questions and then you're on your own for 6-10.

Molecule	# of Total Atoms	Atoms of each			
8H ₂ O	24	H= 16	O= 8		
3CCl ₄	15	C= 3	CI= 12		
11Be(OH) ₂	55	Be= 11	O= 22	H= 22	
5 (NH ₄) 3 PO ₄	100	N= 15	H= <mark>60</mark>	P= 5	O= 20
H ₂ SO ₄	7	H= 2	S= 1	O= 4	
Si(HCO ₃) ₄	21	Si= 1	H= 4	C= 4	O= 12
2AI(CO ₂) ₃	20	Al= 2	C= 6	O= 12	
2HNO ₃	10	H= 2	N= 2	O= 6	
KMnO ₄	6	K= 1	<u>Mn</u> = 1	O= 4	
K ₂ SO ₄	7	K= 2	S= 1	O= 4	
7H3PO4	56	P= 7	H= 21	O= 28	
4Na ₂ CO ₃	24	Na= 8	C= 4	O= 1	2

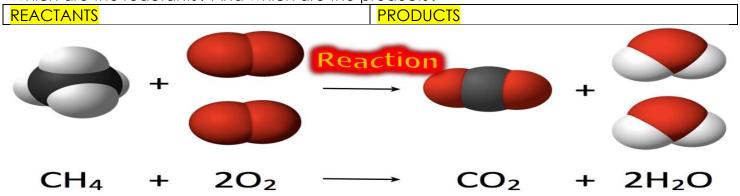
Molecule	# of Total Atoms	Atoms of	f each Eleme	nt		22
5AgNO₃	25	Ag= 5	N= 5	C)= 15	
Ni(CH ₃ CO ₂) ₂	15	Ni= 1	C= 4	O= 4	H= 6	
2NH ₄ NO ₂	16	N= 4	O= 4	H=	8	
CO ₂ (SO ₄) ₃	18	S= 3	C= 1	0:	= 14	
4LiClO ₃ NH ₃	36	Li= 4	CI= 4	O= 12	N= 4	H= 12
4SF ₂	12	S= 4	F= 8			
NCl ₃ Fe(CHCO ₂) ₂	15	N= 1 C	l= 3 Fe= 1	C= 4	O= 4	H= 2
5NaHCO₃	30	Na= 5	C= 5	O= 15	H= 5	
2 Carbon Tetrachloride 2CCl ₄	10	C= 2	CI= 8			
2Ag ₂ CrO ₄	14	Ag= 4	Cr= 2	()= <mark>8</mark>	
½ P ₂ O ₅	Trick, you	u can't	have half	an at	om.	

Part 4 Lesson 4 Balancing Chemical Equations

Chemical Change: The change of substances into other substances through a rearrangement of the atoms.

Balancing Chemical Equations.

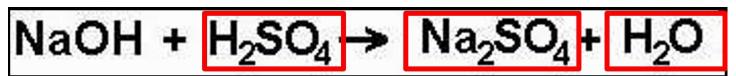
This is what happens in a chemical reactions


It describes what you start with...and end with.

It also describes the state of matter of each (s) (I) (g)

It also describes the amount of each.

Balancing a chemical equation refers to establishing the mathematical relationship between the quantity of reactants and products.


Which are the reactants? And which are the products?

In any physical or chemical change, matter is neither created nor destroyed Matter can be changed from one form to another.

That means we need to have the same amount of chemicals on each side of the \rightarrow .

For this reason, put a square around the chemical formulas.

Begin balancing chemical equations by putting numbers (coefficients) in front of them.

Example H2O on one side could become 2H2O

Remember that each side needs to have same number of Hydrogen and Oxygen

Note – Don't change the subscript Example H₂O becomes H₃O

Please use the provided spaces to balance the chemical equations covered in class.

We'll end up doing this first one twice 😊

Element	Before	After
Na	2	2
0	6	6
Н	4	4
S	1	1

 $NaOH + H_2SO_4 \rightarrow Na_2SO_4 + H_2O$

Element	Before	After
Na		
0		
Н		
S		

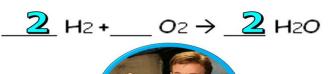
1 CH₄ + 2 O₂ --> 1 CO₂ + 2 H₂O

Element	Before	After
С	1	1
Н	4	4
0	4	4

2NaCl +1BeF2 --> 2NaF +1BeCl2

Element	Before	After
Na	2	2
Cl	2	2
Be	1	1
F	2	2

3 Mg + 1 Mn2O3 --> 3 MgO + 2 Mn


Element	Before	After	
Mg	3	3	
Mn	2	2	
0	3	3	

An easy one...?

 $\frac{2}{2}$ Na + ___Cl₂ \rightarrow $\frac{2}{2}$ NaCl

- The original equation is Na + Cl = NaCl.
- The thing is, chlorine is one of 7
 elements that doesn't like to be alone,
 so it's always 'Cl₂', making the equation
 Na + Cl₂ = NaCl.
- However, this is no longer balanced.
 So what you do is add a '2' onto 2 Na, making it 2 Na + Cl₂ = 2NaCl.
- Now the chlorine is balanced, but the sodium isn't.
- After that, to balance the sodium, you add a '2' in front of 'Na' making the equation $2Na + Cl_2 = 2NaCl$.

Element	Before	After	
Hydrogen	2	2	
Oxygen	2	1	
T D			

Inventory Box			
Element	Before	After	
Hydrogen 2 2			
Oxygen	2	2	

2 AI +	<u>3</u> c12 →	<u>_2</u> AICI3
--------	----------------	-----------------

Element	Before	After
Aluminum	1	1
Chlorine	2	3

l _	Inventory Box					
	Element	Before	After			
	Aluminum	2	2			
Ç	ihlorine	6	6			

$6 CO_2 + 6 H_2O = C_6H_{12}O_6 + 6 O_2$				
Element	Before	After		
C	6	6		
H	12	12		
•	18	18		
	rek Norris			

+C6H12O6 + 6 O2 = Released energy + 6 CO2 + 6 H2O					
Element	Before	After			
C	6	6			
H	12	12			
0	18 tck Norris	18			

2NaCl+	BeF2> 2 N	aF + BeCl2	<u>3</u> Mg+1	Mn2O3> <u>3</u> Mg	gO + <u>2</u> Mn
Sodium		2	Magnesium)	3
Chlorine	2	2	Oxygen	3	3
Beryllium Fluorine	<u></u>	<u></u>	Manganese		2
———					

Please try and balance these two unbalanced chemical equations.						
N ₂ +	3 H ₂ →	NH ₃		O ₂ →	H ₂ O	
Element	Before	After	Element	Before	After	
Element	Before	After	Element	Before	After	
2 Na + 2	H ₂ O → <u>2</u> Na	aOH +H ₂	_2 KClO ₃	→ <u>2 KCl</u>	+ 3 O ₂	
$2 \text{NaCl} + _F_2 \rightarrow 2 \text{NaF+} _Cl_2$			4 Al + 5	3 _O ₂ → _ 2	Al ₂ O ₃	
2 AI + 6 HCI → 2 AICI3 + 3 H2			2 NH4NO3 →	N2 +	O2+ 4 H2O	

$$2 \text{ NaNO}_3 + \text{PbO} \rightarrow \text{Pb(NO}_3)_2 + \text{Na}_2\text{O}$$

6 AgI + Fe₂(CO₃)₃
$$\rightarrow$$
 2 FeI₃ + 3 Ag₂CO₃

$$C_2H_4O_2 + 2 O_2 \rightarrow 2 CO_2 + 2 H_2O$$

$$V_2O_5 + 5 CaS \rightarrow 5 CaO + V_2S_5$$

$$Mn(NO_2)_2 + BeCl_2 \rightarrow Be(NO_2)_2 + MnCl_2$$

$$3 \text{ AgBr} + \text{GaPO}_4 \rightarrow \text{Ag}_3\text{PO}_4 + \text{GaBr}_3$$

$$3 H_2SO_4 + 2 B(OH)_3 \rightarrow B_2(SO_4)_3 + 6 H_2O$$

$$S_8 + 8 O_2 \rightarrow 8 SO_2$$

Fe + 2 AgNO₃
$$\rightarrow$$
 Fe(NO₃)₂ + 2 Ag

1 FeO + 1 PdF₂
$$\rightarrow$$
 1 FeF₂ + 1 PdO

1
$$P_4$$
 + 6 $Br_2 \rightarrow$ 4 PBr_3

2 CoBr₃ + 3 CaSO₄
$$\rightarrow$$
 3 CaBr₂ + 1 Co₂(SO₄)₃

2 Na₃P + 3 CaF₂
$$\rightarrow$$
 6 NaF + 1 Ca₃P₂

2 Mn + 6 HI
$$\rightarrow$$
 3 H₂ + 2 MnI₃

1 CaF₂ + 1 Li₂SO₄
$$\rightarrow$$
 1 CaSO₄ + 2 LiF

Part 4 Review Game

Name:
Due: Today
Score ____ / 100

THE SCRIPT KEEPER	THE MORE YOU KNOW	BALANCNING ACT	BLANK STARE	NAME THAT COMPOUND Bonus round 1 pt each
1) 1 mol = 6.02 × 10 ²³ Also called Avogadro's number	6) Al2(SO ₄) ₃ 2 Aluminum, 3 Sulfur, 12 Oxygen	11) C.) Shows the increasing amount of products compared to reactants.	16) Fe ₂ O ₃ (s) + 3 CO(g) → 2 Fe(I) + 3 CO ₂ (g)	*21) Flubber
2) 189.8 g/mol	7) C.) CH3COOH	12) A=Reactants B=Products	17) 2 NH4NO3 → 2 N2 +O2 + 4 H2O	*22) Oobleck
3) Multiply Divide	8) B.) H ₂ CO ₃	13) Created or Destroyed +1 Owl	18) SiO2 + <mark>4</mark> HF →SiF4 + <mark>2</mark> H2O	*23) Fun Dip
4) .15 mol	9) Answer 15 Nickel= 1 Carbon= 4 Oxygen= 4 Hydrogen= 6	False, Don't ever do that. That thing, just don't do it I'm serious!	19) 2 H2SO4 +_Pb(OH)4 →_Pb(SO4)2 +4 H2O	*24) Dinosaur Eggs
5) Subscript is blue Coefficient is red	10) A.) C6H12O6	15) 2As + 6 NaOH -> 2Na3AsO3 + 3H2		*25) Phish Food

Lesson 8

Final Question Wager _____/5_ Answer: $\frac{3}{9}$ Hg(OH)2 + __H3PO4 \Rightarrow $\frac{2}{9}$ Hg3(PO4)2 + $\frac{6}{9}$ H2O